Бесплатный интенсив по физике
3 огненных вебинара, домашние задания, беседа курса, личный кабинет, связь с преподавателем и
многое другое.
Курс стартует 12 июля.
Подробнее об интенсиве

Задание 8. Механика. Графики. ЕГЭ 2023 по физике
Средний процент выполнения: 68.8%
Ответом к заданию 8 по физике может быть целое число или конечная десятичная дробь.
Задачи для практики
Задача 1
Газ, находящийся в теплоизолированном цилиндре с подвижным поршнем, получает от нагревателя количество теплоты, равное 200 Дж. Поршень при этом, преодолевая сопротивление 800 Н, переместился на 10 см. Насколько изменилась внутренняя энергия газа? В ответе запишите на сколько (Дж).
Решение
Дано:
$Q=200$Дж
$F=800$Н
$∆x=0.1$м
$∆U-?$
Решение:
Запишем I начало термодинамики: $Q=A+∆U$(1), где $A=F·∆x$(2) - работа газа, $∆U$ - изменение внутренней энергии газа. Тогда из (1) с учетом (2) имеем: $∆U=Q-A=Q-F·∆x=200-800·0.1=200-80=120$Дж.
Задача 2
В цилиндре под поршнем находится 2 кг воздуха (молярная масса μ = 0,029 кг/моль) при 20◦С под давлением 1 МПа. Чему равна работа при изобарном нагревании воздуха до 100◦С? Ответ выразите в (кДж), округлив до десятых.
Решение
Дано:
$m=2$кг
$μ=0.029$кг/моль
$t_1=20°C$
$t_2=100°C$
$p=10^6$Па
$R=8.31$Дж/моль·К
$A-?$
Решение:
Работа в изобарном процессе определяется выражением: $A=p·∆V$(1), где $p$ - давление, $∆V$ - изменение объема.
Запишем уравнение Менделеева-Клайперона: $p∆V={m}/{μ}R∆T$(2), учитывая, что $∆T=∆t=t_2-t_1=100°C-20°C=80K$ (изменение температуры в °C и в К имеет одинаковое значение).
Подставим (2) в (1), получим: $A=p·∆V={m}/{μ}R∆T={2·8.31·80}/{0.029}=45848.275=45.8$кДж.
Задача 3
Температуры нагревателя и холодильника у идеального двигателя соответственно равны 427◦C и 27◦C . Какую работу совершает двигатель за один цикл, если он получает от нагревателя в течение цикла количество теплоты равное 7000 Дж? Ответ выразите в (кДж).
Решение
Дано:
$t_н=427°C$
$t_х=27°C$
$Q_н=7000$Дж
$A-?$
Решение:
КПД двигателя определяется выражением: $η={T_н-T_x}/{T_н}={A}/{Q_н}$(1), где $T_н=t_н+273K=427+273=700K; T_x=t_x+273=27+273=300K$, абсолютные температуры нагревателя и холодильника. Из (1) выразим работу двигателя А: $A={(T_н-T_x)·Q_н}/{T_н}={(700-300)·7000}/{700}=4000=4$кДж.
Задача 4
Какую работу совершит газ, расширяясь при постоянном давлении 304 кПа от объёма 3 л до объёма 18 л? Ответ выразите в (кДж) и округлите до сотых.
Решение
Дано:
$p=304·10^3$Па
$V_1=3·10^{-3}м^3$
$V_2=18·10^{-3}м^3$
$A-?$
Решение:
Работа газа определяется выражением: $A=p·∆V=p·(V_2-V_1)=304·10^3·(18·10^{-3}-3·10^{-3})=304·10^3·15·10^{-3}=4560=4.56$кДж.
Задача 5
В закрытом сосуде под поршнем находится водяной пар при температуре 100◦С под давлением 40 кПа. Каким станет давление пара в сосуде, если объём пара в нём изотермически уменьшить в 1,5 раза за счёт движения поршня? Ответ выразите в (кПа).
Решение
Дано:
$T_1=100°С$
$P_1=40$кПа
$T=const$
$V_2={V_1}/{1.5}$
$P_2-?$
Решение:
По закону Менделеева-Клайперона $P_1·V_1=P_2·V_2⇒P_2={P_1·V_1}/{V_2}=40·1.5=60$кПа.
Задача 6
Тепловая машина имеет КПД 25%. Найдите среднюю мощность передачи теплоты холодильнику, если рабочее тело машины за 10 с получает от нагревателя 30 кДж теплоты. Ответ выразите в (кВт).
Решение
Дано:
$η=0.25$
$t=10c$
$Q_н=30$кДж
$P_x-?$
Решение:
$P_н={Q_н}/{t}={30}/{10}=3$кВт.
$η={P_н-P_x}/{P_н}·100$.
$P_x=P_н-η·P_н=3-0.75=2.25$кВт.
Задача 7
КПД идеального двигателя внутреннего сгорания равен 60%. Определите температуру в камере сгорания двигателя, если температура струи, выходящей из его сопла, составляет 727◦С. Ответ выразить в (K).
Решение
Дано:
$η=0.6$
$T_{вых}=727+273=1000К$
$T_н-?$
Решение:
$η={T_н-T_x}/{T_н}$ для тепловой машины определяем $T_н$.
$0.6={T_н-1000}/{T_н}; T_н={1000}/{0.4}=2500K$.
Задача 8
У работающего по циклу Карно теплового двигателя температура нагревателя 400 К, а температура холодильника 150 К. Найдите коэффициент полезного действия этого двигателя. Ответ выразите в (%).
Решение
Дано:
$T_н=400K$
$η-?$
$T_x=150K$
Решение:
Для цикла Карно справедливо уравнение $η={T_н-T_x}/{T_н}·100%={400-150}/{400}·100%=62.5%$
Задача 9
Температура нагревателя идеального теплового дивгателя 177◦С. Определите температуру холодильника, если известно, что коэффициент полезного действия этого двигателя равен 45%. Ответ выразите в (К).
Решение
Дано:
$T_н=177°C$
$η=45%$
$T_x-?$
Решение:
Из теории о теплообмене $η={T_н-T_x}/{T_н}·100%$
Обязательно переводим температуру в К: $T_н=177+273=450K$
$0.45={450-T_x}/{450}⇒T_x=247.5K$
Задача 10

На рисунке показана зависимость давления идеального газа от его объёма при переходе из состояния 1 в состояние 2, а затем в состояние 3. Найдите, чему равно отношение работ газа ${A_{12}}/{A_{23}}$.
Решение
Дано:
${A_{12}}/{A_{23}}-?$
Решение:
Воспользуемся соотношением площадей под графиком ${S_{12}}/{S_{23}}={14}/{8}=1.75$.
Задача 11
Тепловая машина с КПД 60% за цикл работы отдаёт холодильнику 100 Дж теплоты. Какое количество теплоты за цикл получает машина от нагревателя? Ответ выразите в (Дж).
Решение
Дано:
$η=60%$
$Q_x=100$Дж
$Q_н-?$
Решение:
1) Из теории о тепловых машинах $η={Q_н-Q_x}/{Q_н}·100%$.
$100=Q_н·0.4$
$0.6=1-{100}/{Q_н}$
$Q_н=250$Дж
Задача 12
Идеальный газ совершил работу 100 Дж и отдал при этом количество теплоты 300 Дж. Как изменилась при этом внутренняя энергия? В ответе запишите на сколько уменьшилась (Дж).
Решение
Дано:
$A=100$Дж
$Q=-300$Дж
Решение:
По первому началу термодинамики $Q=∆U+A$. Следовательно $∆U=Q-A=(-300)-100=-400$Дж. Знак минус говорит о том, что внутренняя энергия уменьшилась на 400 Дж
Задача 13
Рабочее тело идеальной тепловой машины за один цикл получает от нагревателя теплоту 1000 Дж. Температура нагревателя 500 К, температура холодильника 200 К. Какую работу совершает рабочее тело за один цикл? Ответ выразите в (Дж).
Решение
Дано:
$Q_н=1000$Дж
$T_н=500$К
$T_x=200$К
Решение:
$A=Q_н-Q_x$
$η={T_н-T_x}/{T_н}={Q_н-Q_x}/{Q_н}$ по формуле из основы теплообмена.
$A={(T_н-T_x)Q_н}/{T_н}={300·1000}/{500}=600$Дж.
Задача 14

Вычислите работу идеального газа при совершении им кругового процесса, изображённого на рисунке. Ответ выразите в (Дж).
Решение
Дано:
$А-?$
Решение:
Из графика очевидно: $A=A_{12}+A_{23}+A_{31}$
$A_{23}=0$, т.к. нет изменения $V$.
$A_{12}=p∆V=5·10^5·2·10^{-3}=10^3$
$A_{31}={1}/{2}(2·10^5+5·10^5)·2·10^{-3}=-7·10^2$
$A=A_{12}-A_{31}=1000-700=300$Дж.
Задача 15
В некотором процессе газ отдал окружающей среде количество теплоты, равное 10 кДж. При этом внутренняя энергия газа увеличилась на 30 кДж. Определите работу, которую совершили внешние силы, сжав газ. Ответ выразить в (кДж).
Решение
Дано:
$Q=-10$кДж
$∆U=30$кДж
$A-?$
Решение:
Первое начало термодинамики говорит о том, что количество $Q$ сообщенное системе, идет на приращение внутренней энергии и на совершении работы над внешними телами $Q=∆U+A$
$A=Q-∆U=(-10)-30=-40$кДж.
Тогда работа внешних сил равна:$A'=-A=40$кДж
Задача 16
Двигатель внутреннего сгорания совершил работу, равную 27,6 МДж, и израсходовал при этом 3 л бензина. Вычислите КПД двигателя. Удельная теплота сгорания бензина равна 44 МДж/кг. Плотность бензина равна 700 кг/м3. Ответ округлите до целого. Ответ выразите в (%).
Решение
Дано:
$A_n=27.6$МДж
$m_б=ρ_б·v_б$
$v_б=3$л
$r=44$МДж/кг
$ρ_б=700$кг/м$^3$
$η-?$
Решение:
$η={A_п}/{A_з}$ - полезная и затраченная работа.
$A_з=Q$(сгорание бензина)$=r·m_б=r·ρ_б·v_б$.
$η={27.6·10^6}/{44·10^6·700·3·10^{-3}}·100%=30%$
Задача 17
В цилиндре под поршнем находится гелий (одноатомный газ). Газ расширился при постоянном давлении, совершив работу 3 кДж. Какое количество теплоты сообщили газу? Ответ выразите в (кДж).
Решение
Дано:
$A=3·10^3$Дж
$i=3$
$Q-?$
Решение:
Запишем I начало термодинамики для изобарного процесса (p=const): $Q=A+∆U$(1), где $A=p∆V$(2), $∆U={i}/{2}vR∆T$(3) - изменения внутренней энергии гелия. Исходя из уравнения Менделеева-Клайперона: $p∆V=vR∆T$(4), $∆U={i}/{2}p∆V={i}/{2}A$(5). Подставим (5) в (1): $Q=A+{i}/{2}A=A(1+{i}/{2})=A(1+{3}/{2})=5/2A$(6). Подставим числовые значения в (6): $Q=5/2·3·10^3=7.5кДж$
Задача 18

Работа газа в круговом процессе равна 900 кДж. Рассчитайте значение объёма V0, если давление p0 = 105 Па. Ответ выразите в (м3).
Решение
Дано:
$p_0=10^5$Па
$A=9·10^5$Дж
$V_0-?$
Решение:
Работа газа в термодинамике численно равна площади фигуры кругового процесса. Найдем эту площадь: $A={(p_2-p_1)·(V_3-V_1)}/{2}$(1)
Подставим: $p_2=4p_0; p_1=p_0; V_3=4V_0; V_1=V_0$
$A={(4p_0-p_0)·(4V_0-V_0)}/{2}$
$2A=3p_0·3V_0$
$2A=9p_0V_0$
$V_0={2A}/{9p_0}$(2)
Подставим числовые значения в (2): $V_0={2·9·10^5}/{9·10^5}=2м^3$
Задача 19

Рассчитайте работу газа при переходе из состояния 1 в состояние 2, если давление p0 = 105 Па, а объём V0 = 1 м3. Ответ выразите в (кДж).
Решение
Дано:
$p_0=10^5$Па
$V_0=1м^3$
$p_1=p_0$
$V_1=V_0$
$p_2=3p_0$
$V_2=5V_0$
$A_{12}-?$
Решение:
Поскольку работа газа в термодинамике численно равна площади под графиком:
Тогда имеем: $A_{12}=A_1+A_2={(3p_0-p_0)·(5V_0-V_0)}/{2}+(p_0-0)·(5V_0-V_0)={2p_0·4V_0}/{2}+p_0·4V_0=4p_0V_0+4p_0V_0=8p_0V_0$(1)
Подставим числовые значения в (1): $A_{12}=8·10^5·1=8·10^5=800$кДж.
Можно было сразу вычислить площадь трапеции, ответ получился бы точно такой же. Делайте, как вам удобнее)
Задача 20
Температура нагревателя идеальной тепловой машины в два раза больше температуры холодильника. Чему равен КПД цикла? Ответ выразите в (%).
Решение
Дано:
$T_н=2T$
$T_x=T$
$η-$
Решение:
КПД цикла определяется по формуле: $η={T_н-T_x}/{T_н}·100%$(1), $T_н$ - температура нагревателя, $T_x$ - температура холодильника.
$η={2T-T}/{2T}·100%={T·100%}/{2T}=50%$