Задание 8. МКТ, термодинамика. ЕГЭ 2026 по физике
Средний процент выполнения: 68.8%
Ответом к заданию 8 по физике может быть целое число или конечная десятичная дробь.
Подпишись на суперполезные материалы
Задачи для практики
Задача 1
Газ, находящийся в теплоизолированном цилиндре с подвижным поршнем, получает от нагревателя количество теплоты, равное 200 Дж. Поршень при этом, преодолевая сопротивление 800 Н, переместился на 10 см. Насколько изменилась внутренняя энергия газа? В ответе запишите на сколько (Дж).
Решение
Дано:
$Q=200$Дж
$F=800$Н
$∆x=0.1$м
$∆U-?$
Решение:
Запишем I начало термодинамики: $Q=A+∆U$(1), где $A=F·∆x$(2) - работа газа, $∆U$ - изменение внутренней энергии газа. Тогда из (1) с учетом (2) имеем: $∆U=Q-A=Q-F·∆x=200-800·0.1=200-80=120$Дж.
Задача 2
В цилиндре под поршнем находится 2 кг воздуха (молярная масса μ = 0,029 кг/моль) при 20◦С под давлением 1 МПа. Чему равна работа при изобарном нагревании воздуха до 100◦С? Ответ выразите в (кДж), округлив до десятых.
Решение
Дано:
$m=2$кг
$μ=0.029$кг/моль
$t_1=20°C$
$t_2=100°C$
$p=10^6$Па
$R=8.31$Дж/моль·К
$A-?$
Решение:
Работа в изобарном процессе определяется выражением: $A=p·∆V$(1), где $p$ - давление, $∆V$ - изменение объема.
Запишем уравнение Менделеева-Клайперона: $p∆V={m}/{μ}R∆T$(2), учитывая, что $∆T=∆t=t_2-t_1=100°C-20°C=80K$ (изменение температуры в °C и в К имеет одинаковое значение).
Подставим (2) в (1), получим: $A=p·∆V={m}/{μ}R∆T={2·8.31·80}/{0.029}=45848.275=45.8$кДж.
Задача 3
Температуры нагревателя и холодильника у идеального двигателя соответственно равны 427◦C и 27◦C . Какую работу совершает двигатель за один цикл, если он получает от нагревателя в течение цикла количество теплоты равное 7000 Дж? Ответ выразите в (кДж).
Решение
Дано:
$t_н=427°C$
$t_х=27°C$
$Q_н=7000$Дж
$A-?$
Решение:
КПД двигателя определяется выражением: $η={T_н-T_x}/{T_н}={A}/{Q_н}$(1), где $T_н=t_н+273K=427+273=700K; T_x=t_x+273=27+273=300K$, абсолютные температуры нагревателя и холодильника. Из (1) выразим работу двигателя А: $A={(T_н-T_x)·Q_н}/{T_н}={(700-300)·7000}/{700}=4000=4$кДж.
Задача 4
В подвальном помещении относительная влажность воздуха 70%, а парциальное давление водяных паров 2100 Па. Чему равно давление насыщенных паров при той же температуре? Ответ выразите в (кПа).
Решение
Дано:
$p=2100$Па
$ϕ=70%$
$p_н-?$
Решение:
Относительная влажность воздуха равна: $ϕ={p}/{p_н}·100%$, откуда давление насыщенных паров $p_н$ равно: $p_н={p·100%}/{ϕ}={2100·100%}/{70%}=3000=3$кПа.
Задача 5
В закрытом сосуде под поршнем находится водяной пар при температуре 100◦С под давлением 40 кПа. Каким станет давление пара в сосуде, если объём пара в нём изотермически уменьшить в 1,5 раза за счёт движения поршня? Ответ выразите в (кПа).
Решение
Дано:
$T_1=100°С$
$P_1=40$кПа
$T=const$
$V_2={V_1}/{1.5}$
$P_2-?$
Решение:
По закону Менделеева-Клайперона $P_1·V_1=P_2·V_2⇒P_2={P_1·V_1}/{V_2}=40·1.5=60$кПа.
Задача 6
Тепловая машина имеет КПД 25%. Найдите среднюю мощность передачи теплоты холодильнику, если рабочее тело машины за 10 с получает от нагревателя 30 кДж теплоты. Ответ выразите в (кВт).
Решение
Дано:
$η=0.25$
$t=10c$
$Q_н=30$кДж
$P_x-?$
Решение:
$P_н={Q_н}/{t}={30}/{10}=3$кВт.
$η={P_н-P_x}/{P_н}·100$.
$P_x=P_н-η·P_н=3-0.75=2.25$кВт.
Задача 7
КПД идеального двигателя внутреннего сгорания равен 60%. Определите температуру в камере сгорания двигателя, если температура струи, выходящей из его сопла, составляет 727◦С. Ответ выразить в (K).
Решение
Дано:
$η=0.6$
$T_{вых}=727+273=1000К$
$T_н-?$
Решение:
$η={T_н-T_x}/{T_н}$ для тепловой машины определяем $T_н$.
$0.6={T_н-1000}/{T_н}; T_н={1000}/{0.4}=2500K$.
Задача 8
Относительная влажность воздуха при температуре 100◦С составляет 60%. Чему равно парциальное давление водяных паров, содержащихся в воздухе? Ответ выразить в (кПа).
Решение
Дано:
$T=100°C$
$ϕ_{от}=60%$
$P_{вп}-?$
Решение:
Известно, что для $T=100°C$ давление насыщенного пара $P_*=100$кПа. Тогда $ϕ={P_{вп}}/{P_*}·100⇒P_{вп}=0.6·100=60$кПа.
Задача 9
Относительная влажность воздуха 65%, давление насыщенного пара в нём при некоторой температуре равно 3,4 кПа. Чему равно парциальное давление пара при этой же температуре? Ответ выразите в (кПа), округлив до сотых.
Решение
Дано:
$ϕ=65%$
$p_0=3.4·10^3$Па
$p-?$
Решение:
По определению относительная влажность воздуха равна: $ϕ={p}/{p_0}·100%$(1), где $p$ - парциальное давление пара. Из (1) найдем $p$: $p={ϕ·p_0}/{100%}$(2). Подставим числа: $p={65·3.4·10^3}/{100%}=2210=2.21$кПа.
Задача 10
На рисунке показана зависимость давления идеального газа от его объёма при переходе из состояния 1 в состояние 2, а затем в состояние 3. Найдите, чему равно отношение работ газа ${A_{12}}/{A_{23}}$.
Решение
Дано:
${A_{12}}/{A_{23}}-?$
Решение:
Чтобы найти работу газа, нужно посчитать площадь под графиком в координатах p(V).
Посчитаем площадь под графиком в процессе 1-2 (как площадь трапеции) $$A_{12}={p_{0}+2,5p_{0}}/{2}(3V_{0}-V_{0})=3,5 p_{0}V_{0}$$
Посчитаем работу газа в процессе 2-3 $$A_{23}=p_{0}(5V_{0}-3V_{0})=2 p_{0}V_{0}$$
Итого: $${A_{12}}/{A_{23}}={3,5 p_{0}V_{0}}/{2 p_{0}V_{0}}=1,75$$
Задача 11
Какую работу совершил газ при переходе из состояния 1 в состояние 3? Ответ выразите в (·p0V0).
Решение
По графику $A_{13}=A_{12}+A_{23}; A_{23}=0$, т.к. $A=p∆V$. $∆V_{23}=0$(изохорный) $A_{12}$ - площадь под графиком равна $7p_0V_0$, $A_{13}=7p_0V_0$.
Задача 12
В сосуде с подвижным поршнем находятся вода и её насыщенный пар. Если одновременно увеличить в 2 раза температуру сосуда и его объём, то как увеличится его давление? В ответ запишите: примерно в _ раз(а).
Решение
Объём сосуда не влияет на давление насыщенного пара. Влияние температуры на давление насыщенного пара можно определить по уравнению Менделеева-Клайперона $pV=υRT$. Если температуру увеличить в 2 раза, то и давление увеличится в 2 раза.
Задача 13
В кубическом метре воздуха в помещении при температуре 18◦С находится 1,31 · 10−2 кг водяных паров. Пользуясь таблицей плотности насыщенных паров воды, определите относительную влажность воздуха. Ответ выразите в (%). Ответ округлите до целого.
| t, ◦ C | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| ρ, г/м3 | 13,6 | 14,5 | 15,4 | 16,3 | 17,3 | 18,3 | 19,4 | 20,6 | 21,8 |
Решение
Дано:
$V=1м^3$
$T=18°C$
$m_{вп}=1.31·10^{-2}$кг
$ϕ_{отн}-?$
Решение:
1) Определим плотность водяных паров в комнате $ρ_{вп}={m_{вп}}/{V}={1.31·10^{-2}}/{1}{кг}/{м^3}$.
2) Используя таблицу, определим, и по при температуре 18°C плотность насыщенных паров равна $ρ_{нп}=1.54·10^{-2}{кг}/{м^3}$.
3) Тогда относительная влажность воздуха в комнате равна $ϕ_{отн}={ρ_{вп}}/{ρ_{нп}}·100%={1.31·10^{-2}}/{1.54·10^{-2}}≈85%$.
Задача 14
Днём при 20◦С относительная влажность воздуха была 60 %. Сколько воды в виде росы выделится из каждого кубического метра воздуха, если температура ночью понизилась до 8◦С? Ответ округлите до десятых. Таблица плотности насыщенных паров воды приведена ниже.
| t, ◦C | 8 | 10 | 12 | 14 | 16 | 18 | 20 |
| ρ, г/м3 | 8,3 | 9,4 | 10,7 | 12,1 | 13,6 | 15,4 | 17,3 |
Ответ выразите в (г).
Решение
Дано:
$t_1=20°C$
$V=1м^3$
$ϕ=60%=0.6$
$t_2=8°C$
$m-?$
Решение:
По таблице находим, что при $t_1=20°C$ плотность насыщенного пара $ρ_1=17.3г/м^3$, а при $t_2=8°C$ $ρ_2=8.3г/м^3$. Тогда масса воды в виде росы равна: $m=(ϕ·ρ_1-ρ_2)·V=(0.6·17.3-8.3)·1=(10.38-8.3)·1=2.08·1≈2.1$
Задача 15
В сосуде с постоянным объёмом охлаждают идеальный одноатомный газ, причём количество отведённого тепла равно 300 Дж. Определите объём сосуда, если давление в нём понизилось на 100 кПа. Ответ выразите в (л).
Решение
Дано:
$i=3$
$V=const$
$Q=300Дж$
$∆p=p_1-p_2=10^5Па$
$V-?$
Решение:
Запишем I начало термодинамики для изохорного процесса: $Q=∆U$(1), учитывая, что $∆U={i}/{2}υR∆T$(2), тогда, подставив (2) в (1), имеем: $Q={i}/{2}υR∆T$ или $υR∆T={2Q}/{i}$(3), где $i$ - число степеней свободы.
Запишем уравнение Менделеева-Клайперона для начального и конечного состояния газа: $p_1V=υRT_1$ и $p_2V=υRT_2$, вычтем одно из другого: $p_1V-p_2V=υRT_1-υRT_2$
$(p_1-p_2)V=υR∆T$, учитывая, что $∆p=p_1-p_2$ с учетом выражения (3): $∆pV={2Q}/{i}⇒V={2Q}/{i∆p}$(4). Тогда $V={2·300}/{3·10^5}=2·10^{-3}=2л$
Задача 16
Рассчитайте работу газа при переходе из состояния 1 в состояние 2, если давление p0 = 105 Па, а объём V0 = 1 м3. Ответ выразите в (кДж).
Решение
Дано:
$p_0=10^5$Па
$V_0=1м^3$
$p_1=p_0$
$V_1=V_0$
$p_2=3p_0$
$V_2=5V_0$
$A_{12}-?$
Решение:
Поскольку работа газа в термодинамике численно равна площади под графиком:

Тогда имеем: $A_{12}=A_1+A_2={(3p_0-p_0)·(5V_0-V_0)}/{2}+(p_0-0)·(5V_0-V_0)={2p_0·4V_0}/{2}+p_0·4V_0=4p_0V_0+4p_0V_0=8p_0V_0$(1)
Подставим числовые значения в (1): $A_{12}=8·10^5·1=8·10^5=800$кДж.
Можно было сразу вычислить площадь трапеции, ответ получился бы точно такой же. Делайте, как вам удобнее)
Задача 17
Какое количество теплоты получает 4 моля одноатомного идеального газа в процессе, график которого изображён на рисунке? Ответ выразите в (кДж) и округлите до десятых.
Решение
Дано:
$υ=4$моль
$i=3$
$p_1=10^5$Па
$p_2=3·10^5$Па
$T_1=250K$
$T_2=750K$
$R=8.31{Дж}/{моль·К}$
$Q_{12}-?$
Решение:
Запишем I начало термодинамики: $Q_{12}=A_{12}+∆U_{12}$(1), где $A_{12}=p·∆V$, т.к. $V=const$ (процесс изохорный, то $∆V=0$ и работа газа $A_{12}=0$Дж).
$∆U_{12}={i}/{2}·υ·R∆T={i}/{2}υR(T_2-T_1)$(2) - изменение внутренней энергии газа, где $R$ - универсальная газовая постоянная.
Подставим (2) в (1) и найдем $Q_{12}: Q_{12}={i}/{2}υR(T_2-T_1)$(3)
Подставим числовые значения в (3): $Q_{12}={3}/{2}·4·8.31·(750-250)=24930Дж=24.9кДж$
Задача 18
Температура нагревателя идеальной тепловой машины в два раза больше температуры холодильника. Чему равен КПД цикла? Ответ выразите в (%).
Решение
Дано:
$T_н=2T$
$T_x=T$
$η-$
Решение:
КПД цикла определяется по формуле: $η={T_н-T_x}/{T_н}·100%$(1), $T_н$ - температура нагревателя, $T_x$ - температура холодильника.
$η={2T-T}/{2T}·100%={T·100%}/{2T}=50%$
Задача 19
На pV -диаграмме представлен процесс изменения состояния идеального одноатомного газа. Масса газа не меняется. Какую работу совершает газ при переходе из состояния 1 в состояние 3? Ответ выразить в (кДж).
Решение
Дано:
$T=const$
$m=const$
$A_{1-3}-?$
Решение:
Из условия: $A_{13}=A_{12}+A_{23}$, т.к. при 2-3 $∆V=0; ∆A=p∆V$, то и работа $A_{23}=0$, тогда $A_{13}=A_{12}=p∆V=100·0.2=20$кДж.
Задача 20
При изобарном расширении идеальный двухатомный газ получил количество теплоты, равное 800 Дж. Насколько увеличилась внутренняя энергия газа при этом процессе? Ответ выразите в (Дж) и округлите до целых.
Решение
Дано:
$P=const$
$Q=800$Дж
$∆U-?$
Решение:
$∆Q=∆U+A$.
$∆Q=∆U+{2}/{5}·{∆U}⇒∆U={5}/{7}·800=571$ Дж.
Рекомендуемые курсы подготовки
- 🔥 Получишь мощный старт для дальнейшей подготовки.
- 🔥 Прокачаешь свою Кинематику.
- 🔥 Узнаешь все о Линзах в ЕГЭ.
- 🔥 Будешь решать задачи с дифракционной решеткой на ИЗИ.
- 🔥 Улучшишь свои резы на 20 вторичных баллов ЕГЭ.
Что тебя ждет?
- 👉 7 вебинаров (по 1 вебчику в неделю: согласись, не напряжно, да?).
- 👉 Домашка после каждого веба (без дедлайна, лето все-таки, делай, когда удобно).
- 👉 Скрипты и конспекты, полезные материалы к каждому занятию.
- 👉 Личный кабинет Турбо (это супер-мега удобная площадка 🔥).
- 👉 Тренажёр для отработки заданий (все в том же личном кабинете).
- 👉 Отдельная беседа с преподавателями и однокурсниками.
- 👉 Комфортная атмосфера, эффективная подготовка + чувство, что лето проводишь не зря 🔥.
на бесплатном курсе Турбо ЕГЭ