Задание 8. МКТ, термодинамика. ЕГЭ 2026 по физике
Средний процент выполнения: 68.8%
Ответом к заданию 8 по физике может быть целое число или конечная десятичная дробь.
Подпишись на суперполезные материалы
Задачи для практики
Задача 1
Определите мощность кипятильника, который за 5 минут нагревает 210 г воды от 14◦C до температуры кипения. Потерю энергии не учитывать. Ответ выразите в (Вт) и округлите до целых.
Решение
Дано:
$t=5=5·60=300$c
$m=0.21$кг
$t_1=14°C$
$t_2=100°C$
$N-?$
Решение:
Мощность по определению равна: $N={A}/{t}={Q}/{t}={cm(t_-t_1)}/{t}$(1), где $m$ - масса воды, $c$ - удельная теплоемкость воды $c=4200$Дж/кг·°C. Подставим числовые значения в (1), имеем: $N={4200·0.21·(100-14)}/{300}=252.84$Bт. После округления до целых: 253 Вт
Задача 2
Какую работу совершат 6 кг воздуха, расширяясь при изобарическом нагреве от 5◦С до 150◦С? Ответ выразите в (кДж) и округлите до целых.
Решение
Дано:
$m=6$кг
$t_1=5°C$
$t_2=150°C$
$p=const$
$μ_{возд}=29·10^{-3}$кг/моль
$R=8.31$Дж/моль·К
$A-?$
Решение:
Работа воздуха определяется выражением: $A=p·∆V$(1).
Запишем уравнение Менделеева-Клайперона: $p∆V={m}/{μ}R∆T$(2), где $μ$- молярная масса воздуха, $∆T=∆t=t_1-t_2=150°C-5°C=145°C=145K$.
Подставим (2) в (1), получим: $A=p·∆V={m}/{μ}R∆T={6·8.31·145}/{29·10^{-3}}=249300=249.3=249$кДж.
Задача 3
Двигатель внутреннего сгорания совершил работу, равную 27,6 МДж, и израсходовал при этом 3 л бензина. Вычислите КПД двигателя. Удельная теплота сгорания бензина равна 44 МДж/кг. Плотность бензина равна 700 кг/м3. Ответ округлите до целого. Ответ выразите в (%).
Решение
Дано:
$A_n=27.6$МДж
$m_б=ρ_б·v_б$
$v_б=3$л
$r=44$МДж/кг
$ρ_б=700$кг/м$^3$
$η-?$
Решение:
$η={A_п}/{A_з}$ - полезная и затраченная работа.
$A_з=Q$(сгорание бензина)$=r·m_б=r·ρ_б·v_б$.
$η={27.6·10^6}/{44·10^6·700·3·10^{-3}}·100%=30%$
Задача 4
Какую работу совершил газ при переходе из состояния 1 в состояние 3? Ответ выразите в (·p0V0).
Решение
По графику $A_{13}=A_{12}+A_{23}; A_{23}=0$, т.к. $A=p∆V$. $∆V_{23}=0$(изохорный) $A_{12}$ - площадь под графиком равна $7p_0V_0$, $A_{13}=7p_0V_0$.
Задача 5
Газ, находящийся в теплоизолированном цилиндре с подвижным поршнем, получает от нагревателя количество теплоты, равное 200 Дж. Поршень при этом, преодолевая сопротивление 800 Н, переместился на 10 см. Насколько изменилась внутренняя энергия газа? В ответе запишите на сколько (Дж).
Решение
Дано:
$Q=200$Дж
$F=800$Н
$∆x=0.1$м
$∆U-?$
Решение:
Запишем I начало термодинамики: $Q=A+∆U$(1), где $A=F·∆x$(2) - работа газа, $∆U$ - изменение внутренней энергии газа. Тогда из (1) с учетом (2) имеем: $∆U=Q-A=Q-F·∆x=200-800·0.1=200-80=120$Дж.
Задача 6
Определите КПД нагревателя, расходующего 80 г керосина на нагревание 3 л воды на 90 К. Удельная теплота сгорания керосина 4,3·107 Дж/кг. Ответ выразите в (%) и округлите до целых.
Решение
Дано:
$m_к=0.08$кг
$V_в=3=3·10^{-3}м^3$
$ρ_в=1000{кг}/{м^3}$
$∆T=90K$
$q=4.3·10^7$Дж/кг
$c=4200$Дж/кг·К
$η-?$
Решение:
КПД нагревателя определяется выражением: $η={A_{полез}}/{A_{затр}}·100%$(1), $m_в=ρ_в·V_в$(2) - масса воды, где $A_{полез}=Q_п=cm_в·∆T=c·ρ_в·V_в·∆T$(3) - полезная работа; $A_{затр}=Q_з=q·m_к$(4) - затраченная (полезная) работа. Подставим (3) и (4) в (1) получим: $η={c·ρ_в·V_в·∆T}/{q·m_к}·100%={4200·10^3·3·10^{-3}·90}/{4.3·10^7·8·10^{-2}}·100%={1134000}/{3440000}·100%=32.965%=33%$.
Задача 7
Какую работу совершит газ, расширяясь при постоянном давлении 304 кПа от объёма 3 л до объёма 18 л? Ответ выразите в (кДж) и округлите до сотых.
Решение
Дано:
$p=304·10^3$Па
$V_1=3·10^{-3}м^3$
$V_2=18·10^{-3}м^3$
$A-?$
Решение:
Работа газа определяется выражением: $A=p·∆V=p·(V_2-V_1)=304·10^3·(18·10^{-3}-3·10^{-3})=304·10^3·15·10^{-3}=4560=4.56$кДж.
Задача 8
Относительная влажность водяного пара в сосуде при температуре 100◦С равна 62%. Какова плотность этого пара? Ответ округлите до сотых. Ответ выразить в (кг/м3).
Решение
Дано:
$ϕ_{отн}=62%$
$T=100°C$
$ρ_{вп}-?$
Решение:
Относительная влажность это отношение парциального давления паров воды в газе к равновесному давлению паров при данной температуре $ϕ={p}/{p_{нп}}$. При 100°C давление насыщенных паров равно атмосферному $p_{нп}=10^5$Па, тогда $ρ={p·M}/{R·T}={ϕ·p_{нп}·M}/{R·T}={0.62·10^5·0.018}/{8.31·373}=0.36{кг}/{м^3}$.
Задача 9
На рисунке показана зависимость давления идеального газа от его объёма при переходе из состояния 1 в состояние 2, а затем в состояние 3. Найдите, чему равно отношение работ газа ${A_{12}}/{A_{23}}$.
Решение
Дано:
${A_{12}}/{A_{23}}-?$
Решение:
Чтобы найти работу газа, нужно посчитать площадь под графиком в координатах p(V).
Посчитаем площадь под графиком в процессе 1-2 (как площадь трапеции) $$A_{12}={p_{0}+2,5p_{0}}/{2}(3V_{0}-V_{0})=3,5 p_{0}V_{0}$$
Посчитаем работу газа в процессе 2-3 $$A_{23}=p_{0}(5V_{0}-3V_{0})=2 p_{0}V_{0}$$
Итого: $${A_{12}}/{A_{23}}={3,5 p_{0}V_{0}}/{2 p_{0}V_{0}}=1,75$$
Задача 10
В закрытом сосуде под поршнем находится водяной пар при температуре 100◦С под давлением 40 кПа. Каким станет давление пара в сосуде, если объём пара в нём изотермически уменьшить в 1,5 раза за счёт движения поршня? Ответ выразите в (кПа).
Решение
Дано:
$T_1=100°С$
$P_1=40$кПа
$T=const$
$V_2={V_1}/{1.5}$
$P_2-?$
Решение:
По закону Менделеева-Клайперона $P_1·V_1=P_2·V_2⇒P_2={P_1·V_1}/{V_2}=40·1.5=60$кПа.
Задача 11
При температуре 19◦С влажность воздуха составляла 70 %. При какой температуре выпадет роса? Таблица плотности насыщенных паров воды приведена ниже.
| t, ◦C | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
| ρ, г/м3 | 9,4 | 10,0 | 10,7 | 11,4 | 12,1 | 12,8 | 13,6 | 14,5 | 15,4 | 16,6 |
Ответ выразите в (◦ C).
Решение
Дано:
$t_1=19°C$
$p_0=16.6г/м^3$
$ϕ=70%$
$t_2-?$
Решение:
Согласно показаниям психрометра, температура воздуха 19°C, а относительная влажность 70%. Плотность насыщенного водяного пара в воздухе $p_0=16.6г/м^3$ при 19°C, следовательно, плотность водяного пара в воздухе $p_0={p_0·ϕ}/{100%}={16.6·70%}/{100%}=11.62г/м^3$. Роса выпадет при температуре, при которой водяной пар с такой плотностью является насыщенным, т.е. при 13°C.
Задача 12
Сколько керосина необходимо сжечь, чтобы 50 л воды нагреть от 20◦C до кипения? КПД нагревателя равен 35%. Удельная теплота сгорания керосина 4,3 · 107 Дж/кг. Ответ выразите в (кг), округлив до десятых.
Решение
Дано:
$V=50·10^{-3}м^3$
$ρ_в=10^3{кг}/{м^3}$
$t_1=20°C; t_2=100°C; η=0.35$
$q=4.3·10^7$Дж/кг
$c=4200$Дж/кг·К
$m-?$
Решение:
$Q_1=q·m$(1) - количество теплоты, которое выделяется при сжимании керосина, $m$ - масса керосина. $Q_2=c·m_в·(t_2-t_1)=c·ρ·V·(t_2-t_1)$(2) - количество теплоты, которое необходимо затратить, чтобы нагреть воду массой $m_в=ρ·V$(3), где $ρ$ - плотность воды, $c$ - удельная теплоемкость воды.
КПД нагревателя определяется выражением: $η={A_{полез}}/{A_{затр}}·100%={c·ρ·V·(t_2-t_1)}/{q_m}·100%$(4), откуда $m={c·ρ·V·(t_2-t_1)·100%}/{q·η}$(5). Подставим в (5): $m={4200·10^3·50·10^{-3}·(100-20)·100%}/{4.3·10^7·35%}={4.2·5·8}/{4.3·35}=1.1$кг.
Задача 13
В подвальном помещении относительная влажность воздуха 70%, а парциальное давление водяных паров 2100 Па. Чему равно давление насыщенных паров при той же температуре? Ответ выразите в (кПа).
Решение
Дано:
$p=2100$Па
$ϕ=70%$
$p_н-?$
Решение:
Относительная влажность воздуха равна: $ϕ={p}/{p_н}·100%$, откуда давление насыщенных паров $p_н$ равно: $p_н={p·100%}/{ϕ}={2100·100%}/{70%}=3000=3$кПа.
Задача 14
Рассчитайте работу газа при переходе из состояния 1 в состояние 2, если давление p0 = 105 Па, а объём V0 = 1 м3. Ответ выразите в (кДж).
Решение
Дано:
$p_0=10^5$Па
$V_0=1м^3$
$p_1=p_0$
$V_1=V_0$
$p_2=3p_0$
$V_2=5V_0$
$A_{12}-?$
Решение:
Поскольку работа газа в термодинамике численно равна площади под графиком:

Тогда имеем: $A_{12}=A_1+A_2={(3p_0-p_0)·(5V_0-V_0)}/{2}+(p_0-0)·(5V_0-V_0)={2p_0·4V_0}/{2}+p_0·4V_0=4p_0V_0+4p_0V_0=8p_0V_0$(1)
Подставим числовые значения в (1): $A_{12}=8·10^5·1=8·10^5=800$кДж.
Можно было сразу вычислить площадь трапеции, ответ получился бы точно такой же. Делайте, как вам удобнее)
Задача 15
Температуры нагревателя и холодильника у идеального двигателя соответственно равны 427◦C и 27◦C . Какую работу совершает двигатель за один цикл, если он получает от нагревателя в течение цикла количество теплоты равное 7000 Дж? Ответ выразите в (кДж).
Решение
Дано:
$t_н=427°C$
$t_х=27°C$
$Q_н=7000$Дж
$A-?$
Решение:
КПД двигателя определяется выражением: $η={T_н-T_x}/{T_н}={A}/{Q_н}$(1), где $T_н=t_н+273K=427+273=700K; T_x=t_x+273=27+273=300K$, абсолютные температуры нагревателя и холодильника. Из (1) выразим работу двигателя А: $A={(T_н-T_x)·Q_н}/{T_н}={(700-300)·7000}/{700}=4000=4$кДж.
Задача 16
В сосуде с подвижным поршнем находятся вода и её насыщенный пар. Если одновременно увеличить в 2 раза температуру сосуда и его объём, то как увеличится его давление? В ответ запишите: примерно в _ раз(а).
Решение
Объём сосуда не влияет на давление насыщенного пара. Влияние температуры на давление насыщенного пара можно определить по уравнению Менделеева-Клайперона $pV=υRT$. Если температуру увеличить в 2 раза, то и давление увеличится в 2 раза.
Задача 17
В цилиндре под поршнем находится 2 кг воздуха (молярная масса μ = 0,029 кг/моль) при 20◦С под давлением 1 МПа. Чему равна работа при изобарном нагревании воздуха до 100◦С? Ответ выразите в (кДж), округлив до десятых.
Решение
Дано:
$m=2$кг
$μ=0.029$кг/моль
$t_1=20°C$
$t_2=100°C$
$p=10^6$Па
$R=8.31$Дж/моль·К
$A-?$
Решение:
Работа в изобарном процессе определяется выражением: $A=p·∆V$(1), где $p$ - давление, $∆V$ - изменение объема.
Запишем уравнение Менделеева-Клайперона: $p∆V={m}/{μ}R∆T$(2), учитывая, что $∆T=∆t=t_2-t_1=100°C-20°C=80K$ (изменение температуры в °C и в К имеет одинаковое значение).
Подставим (2) в (1), получим: $A=p·∆V={m}/{μ}R∆T={2·8.31·80}/{0.029}=45848.275=45.8$кДж.
Задача 18
При изобарном расширении идеальный двухатомный газ получил количество теплоты, равное 800 Дж. Насколько увеличилась внутренняя энергия газа при этом процессе? Ответ выразите в (Дж) и округлите до целых.
Решение
Дано:
$P=const$
$Q=800$Дж
$∆U-?$
Решение:
$∆Q=∆U+A$.
$∆Q=∆U+{2}/{5}·{∆U}⇒∆U={5}/{7}·800=571$ Дж.
Задача 19
Относительная влажность воздуха 65%, давление насыщенного пара в нём при некоторой температуре равно 3,4 кПа. Чему равно парциальное давление пара при этой же температуре? Ответ выразите в (кПа), округлив до сотых.
Решение
Дано:
$ϕ=65%$
$p_0=3.4·10^3$Па
$p-?$
Решение:
По определению относительная влажность воздуха равна: $ϕ={p}/{p_0}·100%$(1), где $p$ - парциальное давление пара. Из (1) найдем $p$: $p={ϕ·p_0}/{100%}$(2). Подставим числа: $p={65·3.4·10^3}/{100%}=2210=2.21$кПа.
Задача 20
Тепловая машина имеет КПД 25%. Найдите среднюю мощность передачи теплоты холодильнику, если рабочее тело машины за 10 с получает от нагревателя 30 кДж теплоты. Ответ выразите в (кВт).
Решение
Дано:
$η=0.25$
$t=10c$
$Q_н=30$кДж
$P_x-?$
Решение:
$P_н={Q_н}/{t}={30}/{10}=3$кВт.
$η={P_н-P_x}/{P_н}·100$.
$P_x=P_н-η·P_н=3-0.75=2.25$кВт.
Рекомендуемые курсы подготовки
- 🔥 Получишь мощный старт для дальнейшей подготовки.
- 🔥 Прокачаешь свою Кинематику.
- 🔥 Узнаешь все о Линзах в ЕГЭ.
- 🔥 Будешь решать задачи с дифракционной решеткой на ИЗИ.
- 🔥 Улучшишь свои резы на 20 вторичных баллов ЕГЭ.
Что тебя ждет?
- 👉 7 вебинаров (по 1 вебчику в неделю: согласись, не напряжно, да?).
- 👉 Домашка после каждого веба (без дедлайна, лето все-таки, делай, когда удобно).
- 👉 Скрипты и конспекты, полезные материалы к каждому занятию.
- 👉 Личный кабинет Турбо (это супер-мега удобная площадка 🔥).
- 👉 Тренажёр для отработки заданий (все в том же личном кабинете).
- 👉 Отдельная беседа с преподавателями и однокурсниками.
- 👉 Комфортная атмосфера, эффективная подготовка + чувство, что лето проводишь не зря 🔥.
на бесплатном курсе Турбо ЕГЭ