Задание 15. Простейшие текстовые задачи на проценты. ЕГЭ 2026 по математике (базовой)
Подпишись на суперполезные материалы
Задачи для практики
Задача 1
Одного рулона обоев хватает для оклейки полосы от пола до потолка шириной $1{,}2$ м. Сколько рулонов обоев нужно купить для оклейки прямоугольной комнаты размерами $2{,}5$ м на $3{,}8$ м?
Решение
Найдём периметр прямоугольной комнаты: (2.5 + 3.8) · 2 = 12.6 м.
Одного рулона обоев хватает для оклейки полосы от пола до потолка шириной 1.2 м, для оклейки комнаты нужно не менее 12.6 : 1.2 = 10.5 рулонов. Нужно купить 11 рулонов.
Задача 2
В квартире установлен прибор учёта расхода холодной воды (счётчик). Показания счётчика $1$ июня составляли $120$ куб. м воды, а $1$ июля — $136$ куб. м. Сколько нужно заплатить за холодную воду за июнь, если стоимость $1$ куб. м холодной воды составляет $24$ рубля $50$ копеек? Ответ дайте в рублях.
Решение
Найдём разность показаний счётчика 1 июня и 1 июля: 136 - 120 = 16 куб. м. За июнь нужно заплатить 16 · 24.5 = 392 рубля.
Задача 3
В доме, в котором живёт Света, $17$ этажей и несколько подъездов. На каждом этаже находится по $6$ квартир. Света живёт в квартире № $183$. В каком подъезде живёт Света?
Решение
В одном подъезде 6·17 = 102 квартиры. 183 = 102·1 + 81. Значит, Света живёт во 2 подъезде.
Задача 4
Стоимость полугодовой подписки на журнал «Строю сам» составляет $840$ рублей, а стоимость одного номера журнала — $43$ рубля. За полгода Михаил купил $24$ номера журнала. На сколько рублей меньше он бы потратил, если бы подписался на журнал?
Решение
Михаил за полгода купил $24$ номера журнала и потратил
$24⋅ 43=1032$ рубля. Полугодовая подписка стоит $840$ рублей, значит, можно было потратить меньше на $1032-840=192$ рубля.
Задача 5
Кофемолка стоила $1 200$ рублей. После снижения цены она стала стоить $996$ рублей. На сколько процентов была снижена цена?
Решение
Пусть процентная скидка на стоимость кофемолки равна x%, скидка в рублях составляет 1200 - 996 = 204 рубля.
Составим пропорцию.
1200 - 100%
204 - x%, x = 204 · 100% : 1200 = 17%.
Задача 6
Для покраски $1$ кв. м потолка требуется $240$ г краски. Краска продаётся в банках по $2{,}2$ кг. Какое наименьшее количество банок краски нужно купить для покраски потолка площадью $72$ кв. м?
Решение
Для покраски $72$ кв. м потолка требуется $72 · 240$ г $= 17 280$ г$=17.28$ кг краски. Поскольку в одной банке $2.2$ кг краски, то понадобится не менее $17.28 : 2.2 = 7{47}/{55}$ банки. Наименьшее целое число, которое подходит, равно $8$. Нужно купить $8$ банок краски.
Задача 7
Рост человека — $5$ футов $3$ дюйма. Выразите его рост в сантиметрах, если $1$ фут равен $0{,}305$ м, а $1$ дюйм равен $2{,}54$ см. Результат округлите до целого числа сантиметров.
Решение
1 фут равен 0.305 м = 30.5 см, а 1 дюйм равен 2.54 см, значит 5 футов 3 дюйма равны 5 · 30.5 + 3 · 2.54 = 160.12 см ≈ 160 см.
Задача 8
Стоимость проездного билета на электричку на месяц составляет $840$ рублей, а стоимость билета на одну поездку — $30$ рублей. Полина купила проездной и сделала за месяц $36$ поездок. На сколько рублей больше она бы потратила, если бы покупала билеты на каждую поездку?
Решение
Полина сделала за месяц 36 поездок и потратила бы на них 36·30 = 1080 рублей, если бы покупала билеты на каждую поездку. Разница с оплатой за проездной равна 1080 - 840 = 240 рублей.
Задача 9
Налог на доходы составляет $13%$ от заработной платы. Заработная плата Ивана Артёмовича равна $12000$ рублей. Какую сумму он получит после вычета налога на доходы? Ответ дайте в рублях.
Решение
Сумма, полученная после вычета налога, составит 100% - 13% = 87% = 0.87 от заработной платы. Она равна 12 000·0.87 = 10 440 рублей.
Задача 10
На языковых курсах испанский язык изучают $143$ человека, что составляет $13%$ от всех слушателей курсов. Сколько слушателей на курсах?
Решение
Составим пропорцию, обозначив через $x$ число слушателей курсов.
$143$ человека - $13%$
$x$ человек - $100%$.
$x = {143·100}/{13} = 1100$.
Задача 11
На автозаправке клиент отдал кассиру $1100$ рублей и попросил залить бензин до полного бака. Цена бензина — $38$ руб. $50$ коп. за литр. Сдачи клиент получил $99$ рублей. Сколько литров бензина было залито в бак?
Решение
Пусть в бак залили x литров бензина, тогда можно составить уравнение 1100 - 38.5x = 99, x = 26.
В бак залили 26 литров бензина.
Задача 12
Тигран Петрович купил иностранный автомобиль, спидометр которого показывает скорость в милях в час. Какова скорость автомобиля в километрах в час, если спидометр показывает $48$ миль в час? Считайте, что $1$ миля равна $1609$ м. Ответ округлите до целого числа.
Решение
Переведём скорость автомобиля, выраженную в милях в час, в скорость автомобиля, выраженную в километрах в час. $1.609·48 = 77.232$ км/ч. После округления до целого числа получим $77$ км/ч.
Задача 13
Одна таблетка лекарства весит $24$ мг и содержит $6%$ активного вещества. Ребёнку в возрасте до $8$ месяцев врач прописывает $1{,}2$ мг активного вещества на каждый килограмм веса в сутки. Сколько таблеток этого лекарства следует дать ребёнку в возрасте пяти месяцев и весом $6$ кг в течение суток?
Решение
В одной таблетке содержится ${24 · 6}/{100} = 1.44$ г активного вещества. Ребёнок весит $6$ кг, ему нужно $1.2 · 6 = 7.2$ г активного вещества в сутки или $7.2 : 1.44 = 5$ таблеток лекарства.
Задача 14
Больному прописано лекарство, которое нужно принимать по $0{,}4$ г $2$ раза в день в течение $24$ дней. В одной упаковке $15$ таблеток лекарства по $0{,}2$ г. Какого наименьшего количества упаковок хватит на весь курс лечения?
Решение
Найдем количество граммов лекарства, которое прописано больному для приёма в течение 24 дней. 0.4 · 2 · 24 = 19.2 г. В упаковке 15 · 0.2 = 3 г, поэтому нужно не менее 19.2 : 3 = 6.4 упаковки. 7 упаковок хватит на весь курс лечения.
Задача 15
Установка двух счётчиков воды (холодной и горячей) стоит $8200$ рублей. До установки счётчиков за воду платили $1200$ рублей ежемесячно. После установки счётчиков ежемесячная оплата воды стала составлять $600$ рублей. Через какое наименьшее количество месяцев экономия по оплате воды превысит затраты на установку счётчиков, если тарифы на воду не изменятся?
Решение
Экономия составит $1200 - 600 = 600$ рублей в месяц. Чтобы окупить $8200$ рублей, необходимо не менее $8200 : 600 = 13{2}/{3}$ месяцев. Экономия по оплате воды превысит затраты на установку счётчиков за $14$ месяцев.
Задача 16
Мобильный телефон стоил $13500$ рублей. Через некоторое время цену на эту модель снизили до $10530$ рублей. На сколько процентов была снижена цена?
Решение
Пусть процентная скидка на стоимость телефона равна x%, скидка в рублях составляет 13500 - 10530 = 2970 рублей.
Составим пропорцию.
13500 - 100%
2970 - x%, x = 2970 · 100% : 13500 = 22%.
Задача 17
В магазине покупатель купил $12$ банок консервов. Цена одной банки $119$ рублей. Сколько рублей сдачи должен получить покупатель с $1500$ рублей?
Решение
12 банок консервов стоят 12 · 119 = 1428 рублей, сдача с 1500 рублей равна 1500 - 1428 = 72 рубля.
Задача 18
По тарифному плану «Замечательный безлимитный» компания сотовой связи каждый вечер снимает со счёта абонента $21$ рубль. Если после этого на счету осталось меньше $21$ рубля, то на следующее утро номер блокируют до пополнения счёта. Сегодня утром у Маши на счету было $ 500$ рублей. Сколько дней (включая сегодняшний) она сможет пользоваться телефоном, не пополняя счёт, если других платежей не было?
Решение
$500$ рублей хватит не более чем на $500 : 21 = 23{17}/{21}$ дня. Наибольшее целое число, которое подходит, равно $23$. Маша $23$ дня сможет пользоваться телефоном, не пополняя счёт.
Задача 19
Спидометр автомобиля показывает скорость в милях в час. Какую скорость (в милях в час) показывает спидометр, если автомобиль движется со скоростью $72$ км в час? (Считайте, что $1$ миля равна $1{,}6$ км.)
Решение
Переведём скорость автомобиля, выраженную в километрах в час, в скорость автомобиля, выраженную в милях в час. 72 : 1.6 = 45 миль/ч.
Задача 20
Показания счётчика электроэнергии $1$ января составляли $1567$ киловатт-часов, а $1$ февраля — $1703$ киловатт-часа. Сколько нужно заплатить за электроэнергию за январь, если $1$ киловатт-час электроэнергии стоит $3$ рубля $20$ копеек? Ответ дайте в рублях.
Решение
Найдём разность показаний счётчика электроэнергии $1$ января и $1$ февраля: $1703-1567=136$ киловатт-часов. За январь нужно заплатить $136⋅ 3{,}2=435{,}2$ рубля.
Рекомендуемые курсы подготовки
- Повторишь теорию по линейной и квадратичной функции
- Научишься быстро анализировать графики функций
- Узнаешь секреты производной в базовом ЕГЭ
- Сразу на вебинаре решишь все типы 7 задания
- Научишься применять теорию на практике и с легкостью будешь расправляться с №7 в ЕГЭ
на бесплатном курсе Турбо ЕГЭ