Задание 15. Простейшие текстовые задачи на проценты. ЕГЭ 2026 по математике (базовой)
Средний процент выполнения: 83.7%
Алгоритм решения задания 15:
Определите, связано ли задание только с вычислением выражения или с описанием реальной ситуации.
Если задание текстовое, выделите все числовые данные и величины, упомянутые в условии.
Приведите величины к согласованным единицам измерения, если это требуется.
Составьте арифметическое выражение, отражающее условие задачи.
Выполните вычисления, контролируя корректность промежуточных шагов.
Подпишись на суперполезные материалы
Задачи для практики
Задача 1
Для приготовления маринада для огурцов на $1$ литр воды требуется $12$ г лимонной кислоты. Лимонная кислота продается в пакетиках по $10$ г. Какое наименьшее число пакетиков нужно купить хозяйке для приготовления $9$ литров маринада?
Решение
Найдём массу лимонной кислоты, которая потребуется для приготовления $9$ литров маринада: $12⋅ 9=108$ грамм. В каждом пакетике по $10$ г лимонной кислоты, нужно не менее $108:10=10{,}8$ пакета. Наименьшее необходимое число пакетов равно $11$.
Задача 2
Тигран Петрович купил иностранный автомобиль, спидометр которого показывает скорость в милях в час. Какова скорость автомобиля в километрах в час, если спидометр показывает $48$ миль в час? Считайте, что $1$ миля равна $1609$ м. Ответ округлите до целого числа.
Решение
Переведём скорость автомобиля, выраженную в милях в час, в скорость автомобиля, выраженную в километрах в час. $1.609·48 = 77.232$ км/ч. После округления до целого числа получим $77$ км/ч.
Задача 3
Теплоход рассчитан на $680$ пассажиров и $20$ членов команды. Каждая спасательная шлюпка может вместить $65$ человек. Какое наименьшее число шлюпок должно быть на теплоходе, чтобы в случае необходимости в них можно было разместить всех пассажиров и всех членов команды?
Решение
На теплоходе всего $680+20=700$ человек. Понадобится не менее $700:65=10{10} / {13}$ шлюпок. Наименьшее целое число шлюпок, которое должно быть на теплоходе, чтобы в случае необходимости в них можно было разместить всех пассажиров и всех членов команды, равно $11$.
Задача 4
В детском центре $342$ ребёнка и $30$ воспитателей. Автобус рассчитан не более чем на $35$ пассажиров. Какое наименьшее количество автобусов понадобится для организации экскурсии по городу, чтобы за один раз все дети и учителя посетили эту экскурсию?
Решение
В детском центре всего $342 + 30 = 372$ человека. Понадобится не менее $372 : 35 = 10{22}/{35}$ автобусов. Наименьшее целое число автобусов, в которые можно разместить всех детей и воспитателей, равно $11$.
Задача 5
Больному прописано лекарство, которое нужно принимать по $0{,}4$ г $2$ раза в день в течение $24$ дней. В одной упаковке $15$ таблеток лекарства по $0{,}2$ г. Какого наименьшего количества упаковок хватит на весь курс лечения?
Решение
Найдем количество граммов лекарства, которое прописано больному для приёма в течение 24 дней. 0.4 · 2 · 24 = 19.2 г. В упаковке 15 · 0.2 = 3 г, поэтому нужно не менее 19.2 : 3 = 6.4 упаковки. 7 упаковок хватит на весь курс лечения.
Задача 6
Одна таблетка лекарства весит $24$ мг и содержит $6%$ активного вещества. Ребёнку в возрасте до $8$ месяцев врач прописывает $1{,}2$ мг активного вещества на каждый килограмм веса в сутки. Сколько таблеток этого лекарства следует дать ребёнку в возрасте пяти месяцев и весом $6$ кг в течение суток?
Решение
В одной таблетке содержится ${24 · 6}/{100} = 1.44$ г активного вещества. Ребёнок весит $6$ кг, ему нужно $1.2 · 6 = 7.2$ г активного вещества в сутки или $7.2 : 1.44 = 5$ таблеток лекарства.
Задача 7
Клиент взял в банке кредит $90000$ рублей на год под $15 %$. Он должен погашать кредит, внося в банк ежемесячно одинаковую сумму денег, с тем чтобы через год выплатить всю сумму, взятую в кредит, вместе с процентами. Сколько рублей он должен вносить в банк ежемесячно?
Решение
Через год сумма, взятая в кредит, вместе с процентами составит 90 000 · 1.15 = 103 500 рублей. Ежемесячно клиент должен вносить 103 500 : 12 = 8625 рублей.
Задача 8
Для покраски $1$ кв. м потолка требуется $240$ г краски. Краска продаётся в банках по $2{,}2$ кг. Какое наименьшее количество банок краски нужно купить для покраски потолка площадью $72$ кв. м?
Решение
Для покраски $72$ кв. м потолка требуется $72 · 240$ г $= 17 280$ г$=17.28$ кг краски. Поскольку в одной банке $2.2$ кг краски, то понадобится не менее $17.28 : 2.2 = 7{47}/{55}$ банки. Наименьшее целое число, которое подходит, равно $8$. Нужно купить $8$ банок краски.
Задача 9
Клиент взял в банке кредит $60000$ рублей на год под $18 %$. Он должен погашать кредит, внося в банк ежемесячно одинаковую сумму денег, с тем чтобы через год выплатить всю сумму, взятую в кредит, вместе с процентами. Сколько рублей он должен вносить в банк ежемесячно?
Решение
Через год сумма, взятая в кредит, вместе с процентами составит $60000⋅ 1{,}18=70800$ рублей. Ежемесячно клиент должен вносить $70800:12=5900$ рублей.
Задача 10
Установка двух счётчиков воды (холодной и горячей) стоит $8200$ рублей. До установки счётчиков за воду платили $1200$ рублей ежемесячно. После установки счётчиков ежемесячная оплата воды стала составлять $600$ рублей. Через какое наименьшее количество месяцев экономия по оплате воды превысит затраты на установку счётчиков, если тарифы на воду не изменятся?
Решение
Экономия составит $1200 - 600 = 600$ рублей в месяц. Чтобы окупить $8200$ рублей, необходимо не менее $8200 : 600 = 13{2}/{3}$ месяцев. Экономия по оплате воды превысит затраты на установку счётчиков за $14$ месяцев.
Задача 11
Стоимость проездного билета на электричку на месяц составляет $720$ рублей, а стоимость билета на одну поездку — $20$ рублей. Сергей купил проездной и сделал за месяц $42$ поездки. На сколько рублей больше он бы потратил, если бы покупал билеты на каждую поездку?
Решение
Сергей совершил за месяц 42 поездки и потратил бы на них 42·20 = 840 рублей, если бы покупал билеты на каждую поездку. Разница с оплатой за проездной равна 840 - 720 = 120 рублей.
Задача 12
На автозаправке клиент отдал кассиру $1100$ рублей и попросил залить бензин до полного бака. Цена бензина — $38$ руб. $50$ коп. за литр. Сдачи клиент получил $99$ рублей. Сколько литров бензина было залито в бак?
Решение
Пусть в бак залили x литров бензина, тогда можно составить уравнение 1100 - 38.5x = 99, x = 26.
В бак залили 26 литров бензина.
Задача 13
Установка двух счётчиков воды (холодной и горячей) стоит $4100$ рублей. До установки счётчиков за воду платили $900$ рублей ежемесячно. После установки счётчиков ежемесячная оплата воды стала составлять $600$ рублей. Через какое наименьшее количество месяцев экономия по оплате воды превысит затраты на установку счётчиков, если тарифы на воду не изменятся?
Решение
Экономия составит $900 - 600 = 300$ рублей в месяц. Чтобы окупить 4100 рублей, необходимо не менее $4100 : 300 = 13{2}/{3}$ месяцев. Экономия по оплате воды превысит затраты на установку счётчиков за $14$ месяцев.
Задача 14
В квартире установлен прибор учёта расхода холодной воды (счётчик). Показания счётчика $1$ июня составляли $120$ куб. м воды, а $1$ июля — $136$ куб. м. Сколько нужно заплатить за холодную воду за июнь, если стоимость $1$ куб. м холодной воды составляет $24$ рубля $50$ копеек? Ответ дайте в рублях.
Решение
Найдём разность показаний счётчика 1 июня и 1 июля: 136 - 120 = 16 куб. м. За июнь нужно заплатить 16 · 24.5 = 392 рубля.
Задача 15
Стоимость полугодовой подписки на журнал «Строю сам» составляет $840$ рублей, а стоимость одного номера журнала — $43$ рубля. За полгода Михаил купил $24$ номера журнала. На сколько рублей меньше он бы потратил, если бы подписался на журнал?
Решение
Михаил за полгода купил $24$ номера журнала и потратил
$24⋅ 43=1032$ рубля. Полугодовая подписка стоит $840$ рублей, значит, можно было потратить меньше на $1032-840=192$ рубля.
Задача 16
Стоимость проездного билета на электричку на месяц составляет $840$ рублей, а стоимость билета на одну поездку — $30$ рублей. Полина купила проездной и сделала за месяц $36$ поездок. На сколько рублей больше она бы потратила, если бы покупала билеты на каждую поездку?
Решение
Полина сделала за месяц 36 поездок и потратила бы на них 36·30 = 1080 рублей, если бы покупала билеты на каждую поездку. Разница с оплатой за проездной равна 1080 - 840 = 240 рублей.
Задача 17
Налог на доходы составляет $13%$ от заработной платы. После удержания налога на доходы Татьяна Львовна получила $13485$ рублей. Сколько рублей составляет заработная плата Татьяны Львовны?
Решение
Сумма, полученная после вычета налога, составит 100% - 13% = 87% = 0.87 от заработной платы. Она равна 13485:0.87 = 15500 рублей.
Задача 18
Одного рулона обоев хватает для оклейки полосы от пола до потолка шириной $1{,}2$ м. Сколько рулонов обоев нужно купить для оклейки прямоугольной комнаты размерами $2{,}5$ м на $3{,}8$ м?
Решение
Найдём периметр прямоугольной комнаты: (2.5 + 3.8) · 2 = 12.6 м.
Одного рулона обоев хватает для оклейки полосы от пола до потолка шириной 1.2 м, для оклейки комнаты нужно не менее 12.6 : 1.2 = 10.5 рулонов. Нужно купить 11 рулонов.
Задача 19
Тетрадь стоила $27$ рублей. Какое наибольшее число таких тетрадей можно купить на $220$ рублей после понижения цены на $10%$?
Решение
Цена после понижения составляет $100%-10%=90%=0{,}9$ от начальной цены. После понижения цены тетрадь стала стоить $27⋅ 0{,}9=24{,}3$ рубля.
Найдём число тетрадей, которое можно купить на $220$ рублей. $220:24{,}3={2200} / {243}=9{13} / {243}$. Значит, наибольшее число тетрадей, которое можно купить на $220$ рублей, равно $9$.
Задача 20
Спидометр автомобиля показывает скорость в милях в час. Какую скорость (в милях в час) показывает спидометр, если автомобиль движется со скоростью $72$ км в час? (Считайте, что $1$ миля равна $1{,}6$ км.)
Решение
Переведём скорость автомобиля, выраженную в километрах в час, в скорость автомобиля, выраженную в милях в час. 72 : 1.6 = 45 миль/ч.
Рекомендуемые курсы подготовки
- Повторишь теорию по линейной и квадратичной функции
- Научишься быстро анализировать графики функций
- Узнаешь секреты производной в базовом ЕГЭ
- Сразу на вебинаре решишь все типы 7 задания
- Научишься применять теорию на практике и с легкостью будешь расправляться с №7 в ЕГЭ
на бесплатном курсе Турбо ЕГЭ