Задание 15. Простейшие текстовые задачи на проценты. ЕГЭ 2026 по математике (базовой)
Средний процент выполнения: 83.7%
Алгоритм решения задания 15:
Определите, связано ли задание только с вычислением выражения или с описанием реальной ситуации.
Если задание текстовое, выделите все числовые данные и величины, упомянутые в условии.
Приведите величины к согласованным единицам измерения, если это требуется.
Составьте арифметическое выражение, отражающее условие задачи.
Выполните вычисления, контролируя корректность промежуточных шагов.
Подпишись на суперполезные материалы
Задачи для практики
Задача 1
В доме, в котором живёт Ваня, один подъезд. На каждом этаже по четыре квартиры. Ваня живёт в квартире $46$. На каком этаже живёт Ваня?
Решение
$46:4=11{,}5$. Значит, Ваня живёт на $12$-м этаже.
Задача 2
Для приготовления маринада для огурцов на $1$ литр воды требуется $12$ г лимонной кислоты. Лимонная кислота продается в пакетиках по $10$ г. Какое наименьшее число пакетиков нужно купить хозяйке для приготовления $9$ литров маринада?
Решение
Найдём массу лимонной кислоты, которая потребуется для приготовления $9$ литров маринада: $12⋅ 9=108$ грамм. В каждом пакетике по $10$ г лимонной кислоты, нужно не менее $108:10=10{,}8$ пакета. Наименьшее необходимое число пакетов равно $11$.
Задача 3
Установка двух счётчиков воды (холодной и горячей) стоит $8200$ рублей. До установки счётчиков за воду платили $1200$ рублей ежемесячно. После установки счётчиков ежемесячная оплата воды стала составлять $600$ рублей. Через какое наименьшее количество месяцев экономия по оплате воды превысит затраты на установку счётчиков, если тарифы на воду не изменятся?
Решение
Экономия составит $1200 - 600 = 600$ рублей в месяц. Чтобы окупить $8200$ рублей, необходимо не менее $8200 : 600 = 13{2}/{3}$ месяцев. Экономия по оплате воды превысит затраты на установку счётчиков за $14$ месяцев.
Задача 4
По тарифному плану «Замечательный безлимитный» компания сотовой связи каждый вечер снимает со счёта абонента $21$ рубль. Если после этого на счету осталось меньше $21$ рубля, то на следующее утро номер блокируют до пополнения счёта. Сегодня утром у Маши на счету было $ 500$ рублей. Сколько дней (включая сегодняшний) она сможет пользоваться телефоном, не пополняя счёт, если других платежей не было?
Решение
$500$ рублей хватит не более чем на $500 : 21 = 23{17}/{21}$ дня. Наибольшее целое число, которое подходит, равно $23$. Маша $23$ дня сможет пользоваться телефоном, не пополняя счёт.
Задача 5
В детском центре $342$ ребёнка и $30$ воспитателей. Автобус рассчитан не более чем на $35$ пассажиров. Какое наименьшее количество автобусов понадобится для организации экскурсии по городу, чтобы за один раз все дети и учителя посетили эту экскурсию?
Решение
В детском центре всего $342 + 30 = 372$ человека. Понадобится не менее $372 : 35 = 10{22}/{35}$ автобусов. Наименьшее целое число автобусов, в которые можно разместить всех детей и воспитателей, равно $11$.
Задача 6
Мобильный телефон стоил $13500$ рублей. Через некоторое время цену на эту модель снизили до $10530$ рублей. На сколько процентов была снижена цена?
Решение
Пусть процентная скидка на стоимость телефона равна x%, скидка в рублях составляет 13500 - 10530 = 2970 рублей.
Составим пропорцию.
13500 - 100%
2970 - x%, x = 2970 · 100% : 13500 = 22%.
Задача 7
Теплоход рассчитан на $680$ пассажиров и $20$ членов команды. Каждая спасательная шлюпка может вместить $65$ человек. Какое наименьшее число шлюпок должно быть на теплоходе, чтобы в случае необходимости в них можно было разместить всех пассажиров и всех членов команды?
Решение
На теплоходе всего $680+20=700$ человек. Понадобится не менее $700:65=10{10} / {13}$ шлюпок. Наименьшее целое число шлюпок, которое должно быть на теплоходе, чтобы в случае необходимости в них можно было разместить всех пассажиров и всех членов команды, равно $11$.
Задача 8
Клиент взял в банке кредит $90000$ рублей на год под $15 %$. Он должен погашать кредит, внося в банк ежемесячно одинаковую сумму денег, с тем чтобы через год выплатить всю сумму, взятую в кредит, вместе с процентами. Сколько рублей он должен вносить в банк ежемесячно?
Решение
Через год сумма, взятая в кредит, вместе с процентами составит 90 000 · 1.15 = 103 500 рублей. Ежемесячно клиент должен вносить 103 500 : 12 = 8625 рублей.
Задача 9
Установка двух счётчиков воды (холодной и горячей) стоит $4100$ рублей. До установки счётчиков за воду платили $900$ рублей ежемесячно. После установки счётчиков ежемесячная оплата воды стала составлять $600$ рублей. Через какое наименьшее количество месяцев экономия по оплате воды превысит затраты на установку счётчиков, если тарифы на воду не изменятся?
Решение
Экономия составит $900 - 600 = 300$ рублей в месяц. Чтобы окупить 4100 рублей, необходимо не менее $4100 : 300 = 13{2}/{3}$ месяцев. Экономия по оплате воды превысит затраты на установку счётчиков за $14$ месяцев.
Задача 10
Одна таблетка лекарства весит $24$ мг и содержит $6%$ активного вещества. Ребёнку в возрасте до $8$ месяцев врач прописывает $1{,}2$ мг активного вещества на каждый килограмм веса в сутки. Сколько таблеток этого лекарства следует дать ребёнку в возрасте пяти месяцев и весом $6$ кг в течение суток?
Решение
В одной таблетке содержится ${24 · 6}/{100} = 1.44$ г активного вещества. Ребёнок весит $6$ кг, ему нужно $1.2 · 6 = 7.2$ г активного вещества в сутки или $7.2 : 1.44 = 5$ таблеток лекарства.
Задача 11
Тигран Петрович купил иностранный автомобиль, спидометр которого показывает скорость в милях в час. Какова скорость автомобиля в километрах в час, если спидометр показывает $48$ миль в час? Считайте, что $1$ миля равна $1609$ м. Ответ округлите до целого числа.
Решение
Переведём скорость автомобиля, выраженную в милях в час, в скорость автомобиля, выраженную в километрах в час. $1.609·48 = 77.232$ км/ч. После округления до целого числа получим $77$ км/ч.
Задача 12
В доме, в котором живёт Света, $17$ этажей и несколько подъездов. На каждом этаже находится по $6$ квартир. Света живёт в квартире № $183$. В каком подъезде живёт Света?
Решение
В одном подъезде 6·17 = 102 квартиры. 183 = 102·1 + 81. Значит, Света живёт во 2 подъезде.
Задача 13
Налог на доходы составляет $13%$ от заработной платы. После удержания налога на доходы Татьяна Львовна получила $13485$ рублей. Сколько рублей составляет заработная плата Татьяны Львовны?
Решение
Сумма, полученная после вычета налога, составит 100% - 13% = 87% = 0.87 от заработной платы. Она равна 13485:0.87 = 15500 рублей.
Задача 14
Стоимость проездного билета на электричку на месяц составляет $720$ рублей, а стоимость билета на одну поездку — $20$ рублей. Сергей купил проездной и сделал за месяц $42$ поездки. На сколько рублей больше он бы потратил, если бы покупал билеты на каждую поездку?
Решение
Сергей совершил за месяц 42 поездки и потратил бы на них 42·20 = 840 рублей, если бы покупал билеты на каждую поездку. Разница с оплатой за проездной равна 840 - 720 = 120 рублей.
Задача 15
Стоимость полугодовой подписки на журнал «Мой дом» составляет $1000$ рублей, а стоимость одного номера журнала — $54$ рубля. За полгода Ира купила $21$ номер журнала. На сколько рублей меньше она бы потратила, если бы подписалась на журнал?
Решение
Ира за полгода купила $21$ номер журнала и потратила $21·54 = 1134$ рубля. Полугодовая подписка стоит $1000$ рублей, значит можно было потратить меньше на $1134-1000 = 134$ рубля.
Задача 16
Стоимость полугодовой подписки на журнал «Строю сам» составляет $840$ рублей, а стоимость одного номера журнала — $43$ рубля. За полгода Михаил купил $24$ номера журнала. На сколько рублей меньше он бы потратил, если бы подписался на журнал?
Решение
Михаил за полгода купил $24$ номера журнала и потратил
$24⋅ 43=1032$ рубля. Полугодовая подписка стоит $840$ рублей, значит, можно было потратить меньше на $1032-840=192$ рубля.
Задача 17
Тетрадь стоила $27$ рублей. Какое наибольшее число таких тетрадей можно купить на $220$ рублей после понижения цены на $10%$?
Решение
Цена после понижения составляет $100%-10%=90%=0{,}9$ от начальной цены. После понижения цены тетрадь стала стоить $27⋅ 0{,}9=24{,}3$ рубля.
Найдём число тетрадей, которое можно купить на $220$ рублей. $220:24{,}3={2200} / {243}=9{13} / {243}$. Значит, наибольшее число тетрадей, которое можно купить на $220$ рублей, равно $9$.
Задача 18
Кофемолка стоила $1 200$ рублей. После снижения цены она стала стоить $996$ рублей. На сколько процентов была снижена цена?
Решение
Пусть процентная скидка на стоимость кофемолки равна x%, скидка в рублях составляет 1200 - 996 = 204 рубля.
Составим пропорцию.
1200 - 100%
204 - x%, x = 204 · 100% : 1200 = 17%.
Задача 19
В магазине покупатель купил $12$ банок консервов. Цена одной банки $119$ рублей. Сколько рублей сдачи должен получить покупатель с $1500$ рублей?
Решение
12 банок консервов стоят 12 · 119 = 1428 рублей, сдача с 1500 рублей равна 1500 - 1428 = 72 рубля.
Задача 20
На языковых курсах испанский язык изучают $143$ человека, что составляет $13%$ от всех слушателей курсов. Сколько слушателей на курсах?
Решение
Составим пропорцию, обозначив через $x$ число слушателей курсов.
$143$ человека - $13%$
$x$ человек - $100%$.
$x = {143·100}/{13} = 1100$.
Рекомендуемые курсы подготовки
- 👻 Вспомнишь алгебраические преобразования
- 👻 Отработаешь линейные, квадратные и дробно-рациональные уравнения
- 👻 Покоришь движение по воде
- 👻 И в целом крайне продуктивно проведешь время
на бесплатном курсе Турбо ЕГЭ