Задание 16. Вычисления и преобразования. ЕГЭ 2026 по математике (базовой)

За это задание ты можешь получить 1 балл. На решение дается около 7 минут. Уровень сложности: базовый.
Средний процент выполнения: 62.2%

Алгоритм решения задания 16:

  1. Проанализировать данное числовое выражение и определить все используемые в нём операции.
  2. Установить порядок выполнения действий с учётом скобок и приоритетов арифметических операций.
  3. При необходимости упростить отдельные части выражения до начала основных вычислений.
  4. Последовательно выполнить вычисления, контролируя корректность каждого шага.
  5. Сопоставить полученное значение с ожидаемым порядком величины.

Задачи для практики

Задача 1

Найдите значение выражения $4\cos(x - 3π ) - 7\sin(0{,}5π + x)$, если $\cos x = 0{,}3$.

Решение

Решение

Шаг 1: Упростим выражение cos(x - 3π)

Используем свойство периодичности косинуса и формулу приведения:

cos(x - 3π) = cos(x - 3π + 2π) = cos(x - π)

Теперь применим формулу приведения для косинуса:

cos(x - π) = -cos x

Таким образом:

4cos(x - 3π) = 4 × (-cos x) = -4cos x

Шаг 2: Упростим выражение sin(0.5π + x)

Используем формулу приведения для синуса:

sin(π/2 + x) = cos x

Таким образом:

7sin(0.5π + x) = 7cos x

Шаг 3: Подставим упрощенные выражения в исходное

Исходное выражение:

4cos(x - 3π) - 7sin(0.5π + x) = -4cos x - 7cos x = -11cos x

Шаг 4: Подставим значение cos x = 0.3

-11cos x = -11 × 0.3 = -3.3
Ответ: -3.3
Ответ: -3.3
Показать решение
Бесплатный интенсив

Задача 2

Найдите значение выражения ${√^{18}{11} ⋅ √^9{11}} / {√^6{11}}$.

Решение

${√^{18}{11} ⋅ √^9{11}} / {√^6{11}} = {11^{1/18} ⋅ 11^{1/9}} / 11^{1/6} = 11^{1/18 + 1/9 - 1/6} = 11^{1/18 + 2/18 - 3/18} = 11^{0} = 1$

Ответ: 1
Показать решение
Бесплатный интенсив

Задача 3

Найдите значение выражения $8^{3√ {5}-1}⋅ 8^{1-√ {5} }: 8^{2√ {5}-1}$.

Решение

$8^{(3√5-1)+(1-√5)-(2√5-1)} = 8^1 = 8$.

Ответ: 8
Показать решение
Бесплатный интенсив

Задача 4

Найдите значение выражения ${3\sin β +15\cos β -8} / {\sinβ +5\cosβ +2}$, если $\tg β = - 5$.

Решение

Решение

Шаг 1: Введем замену переменной

Заметим, что в числителе и знаменателе выражения есть похожие комбинации sinβ и cosβ.

Введем замену: пусть t = sinβ + 5cosβ

Тогда наше выражение примет вид:

(3t - 8) / (t + 2)

Шаг 2: Выразим t через tgβ

Мы знаем, что tgβ = -5, то есть sinβ/cosβ = -5, откуда sinβ = -5cosβ

Подставим это в выражение для t:

t = sinβ + 5cosβ = -5cosβ + 5cosβ = 0

Таким образом, t = 0.

Шаг 3: Подставим значение t в выражение

Теперь подставим t = 0 в наше выражение:

(3×0 - 8) / (0 + 2) = (-8) / 2 = -4
Ответ: -4
Ответ: -4
Показать решение
Бесплатный интенсив

Задача 5

Найдите значение выражения ${2√ {a}+7} / {√ {a}}- {7√ {a}} / {a}-2a+11$ при $a= 5$.

Решение

${2√{a}+7}/{√{a}} - {7√{a}}/{a} - 2a + 11 = 2 + 7/√{a} - 7/√{a} - 2a + 11 = 13 - 2a$
При $a=5$: $13 - 2·5 = 13 - 10 = 3$

Ответ: 3
Показать решение
Бесплатный интенсив

Задача 6

Найдите значение выражения $({1} / {5a+7}-{1} / {5a-7})⋅ (25a^2-49)$.

Решение

$({1} / {5a+7}-{1} / {5a-7})⋅ (25a^2-49) = {(5a-7) - (5a+7)}/{(5a+7)(5a-7)} ⋅ (25a^2-49) = {-14}/{25a^2-49} ⋅ (25a^2-49) = -14$

Ответ: -14
Показать решение
Бесплатный интенсив

Задача 7

Найдите значение выражения ${18(\sin^2 16°- \cos^2 16°)} / {\cos 32°}$.

Решение

Применив формулу двойного аргумента $cos 2α = cos^2 α - sin^2 α$, получим ${18(sin^2 16° - cos^2 16°)}/{cos^2 16° - sin^2 16°} = -18$.

Ответ: -18
Показать решение
Бесплатный интенсив

Задача 8

Найдите значение выражения ${7√ {x}} / {x}+{12√ {x}-7} / {√ {x}}-3x+5$ при $x=2$.

Решение

${7√x}/{(√x)^2} + {12√x}/{√x} - {7}/{√x} - 3x + 5 = {7}/{√x} + 12 -{7}/{√x} - 3x + 5 = 17 - 3x$.

При $x = 2$ получим $17 - 3·2 = 11$.

Ответ: 11
Показать решение
Бесплатный интенсив

Задача 9

Найдите значение выражения ${18} / {√ {6}}\tg {π} / {3}⋅\sin{π} / {4}$.

Решение

${18}/{√6} tg{π}/{3} · sin{π}/{4} = {18}/{√6}·√3 ·{√2}/{2} = {18√6}/{√6·2} = 9$.

Ответ: 9
Показать решение
Бесплатный интенсив

Задача 10

Найдите значение выражения $(√ {23} - √ {15})(√ {23}+√ {15})$.

Решение

Используем формулу сокращенного умножения: $(√{23} - √{15})(√{23} + √{15}) = (√{23})^2 - (√{15})^2 = 23 - 15 = 8$.

Ответ: 8
Показать решение
Бесплатный интенсив

Задача 11

Найдите значение выражения $√ {160^2-96^2}$.

Решение

Под корнем применим формулу сокращенного умножения, а именно — разность квадратов: $a^2-b^2=(a-b)(a+b)$

$√{160^2 - 96^2} = √{(160 - 96)(160+ 96)} = √{64·256} = 8·16 = 128$.

Ответ: 128
Показать решение
Бесплатный интенсив

Задача 12

Найдите значение выражения $(1-\log_3 18)(1-\log_6 18)$.

Решение

$(log__3 3 - log_3 18)(log_6 6 - log_6 18) = log_3 {1}/{6} · log_6 {1}/{3} = log_3 6 · log_6 3 = 1$.

Ответ: 1
Показать решение
Бесплатный интенсив

Задача 13

Найдите значение выражения ${√^5{14}⋅ √^5{16}} / {√^5{7}}$.

Решение

${√^5{14} · √^5{16}}/{√^5{7}} = {√^5{14 · 16}}/{√^5{7}} = √^5{{14 · 16}/{7}} = √^5{2 · 16} = √^5{32} = 2.$

Ответ: 2
Показать решение
Бесплатный интенсив

Задача 14

Найдите значение выражения ${3a^4c^{-5}} / {(5a^2)^3} ⋅ {125c} / {a^{-2}c^{-4}}$.

Решение

${3a^4c^{-5}} / {(5a^2)^3} ⋅ {125c} / {a^{-2}c^{-4}} = {3a^4c^{-5}} / {125a^6} ⋅ {125c} / {a^{-2}c^{-4}} = 3a^{4-6-(-2)}c^{-5-(-4)+1} = 3a^0c^0 = 3$

Ответ: 3
Показать решение
Бесплатный интенсив

Задача 15

Найдите значение выражения $(√ {17} - √ {12})(√ {17}+√ {12})$.

Решение

$(√{17} - √{12})(√{17} + √{12}) = (√{17})^2 - (√{12})^2 = 17 - 12 = 5$.

Ответ: 5
Показать решение
Бесплатный интенсив

Задача 16

Найдите значение выражения ${13√^36{√^5{a}}+9√^10{√^18{a}}} / {2√^4{√^45{a}}}$ при $a>0$.

Решение

${13·a^{1/36·1/5} + 9·a^{1/10·1/18}} / {2·a^{1/4·1/45}} = {13·a^{1/180} + 9·a^{1/180}} / {2·a^{1/180}} ={a^{1/180} ·({13 + 9})} / {2·a^{1/180}} = {13 + 9} / {2} = {22} / {2} = 11$

Ответ: 11
Показать решение
Бесплатный интенсив

Задача 17

Найдите значение выражения $ \log_{0{,}5} 10-\log_{0{,}5}5 $.

Решение

$log_{0.5}10 - log_{0.5}5 = log_{0.5}{10}/{5} = log__{0.5}({5}/{10})^{-1} = -1$.

Ответ: -1
Показать решение
Бесплатный интенсив

Задача 18

Найдите значение выражения $ {\log_{3} 36} / {2+\log_{3} 4}$.

Решение

$ {\log_{3} (9⋅4)} / {2+\log_{3}4} ={\log_{3} 9+\log_3 4} / {2+\log_{3}4} ={2+\log_3 4} / {2+\log_{3}4} =1$.

Ответ: 1
Показать решение
Бесплатный интенсив

Задача 19

Найдите значение выражения $\log_5 27 ⋅ \log_3 25$.

Решение

$(log_5 3^3)log_3 5^2 = 3 log_5 3 · 2 log_3 5 = 6 log_5 3 · {1}/{log_5 3} = 6$.

Ответ: 6
Показать решение
Бесплатный интенсив

Задача 20

Найдите значение выражения $√ {160^2-{96}^2}$.

Решение

Преобразуем подкоренное выражение при помощи формулы "Разность квадратов" $√(160^2-96^2)=√((160-96)·(160+96))=√(64·256)=8·16=128$

Ответ: 128
Показать решение
Бесплатный интенсив
Показать еще
  • Без воды
  • Ламповая атмосфера
  • Крутые преподаватели

ЕГЭ 2026: бесплатный курс
по математике (базовой)

На бесплатном демо-курсе ты:
  • 👻 Вспомнишь алгебраические преобразования
  • 👻 Отработаешь линейные, квадратные и дробно-рациональные уравнения
  • 👻 Покоришь движение по воде
  • 👻 И в целом крайне продуктивно проведешь время
Получи бесплатный демо-доступ
Оставь заявку и займи место
на бесплатном курсе Турбо ЕГЭ
Нажимая на кнопку «Отправить», вы принимаете положение об обработке персональных данных.