Задание 11. Графики функций. ЕГЭ 2026 по математике профильного уровня
Средний процент выполнения: 60.8%
Ответом к заданию 11 по математике (профильной) может быть целое число или конечная десятичная дробь.
Подпишись на суперполезные материалы
Задачи для практики
Задача 1
На рисунке изображен график функции ${f(x) = log_a(x) + b}$. Найдите $f(27)$
Решение
По рисунку определяем, что ${f(x) = log_3(x) -1}$
Тогда, $f(27)={log_3(27) -1=2}$
Задача 2
На рисунке изображён график функции вида $y=\log_a{x}$, где $a$ — целое число. Найдите $a$.
Решение
На рисунке изображён график функции $y = \log_a{x}$, где $a$ — целое число. Для определения основания $a$ воспользуемся подстановкой известной точки, лежащей на графике.
График проходит через точку (5; 1). Это означает, что при $x = 5$, значение функции $y = 1$. Подставим эти значения в уравнение функции:
$y = \log_a{x}$
Подставляем $x = 5$ и $y = 1$:
$1 = \log_a{5}$
По определению логарифма это равенство эквивалентно:
$a^1 = 5$
Следовательно, основание $a = 5$.
Проверка:
Если $a = 5$, то функция $y = \log_5{x}$ проходит через точку {1; 0}, так как $\log_5{1} = 0$, и через точку {5; 1}, так как $\log_5{5} = 1$.
Ответ: $a = 5$.
Задача 3
На рисунке изображён график функции вида $y=\log_a{x}$, где $a$ — целое число. Найдите $a$.
Решение
По рисунку в условии задачи заметим, что $y(4)=1$. Тогда $\log_a{4}=1$ и $a=4$.
Задача 4
На рисунке изображён график функции вида $ f(x) = {a}/{x+b} + c $, где числа $a$, $b$ и $c$ — целые. Найдите сумму коэффициентов $ a + b + c $.
Решение
График функции имеет горизонтальную асимптоту $ y = -2 $, значит $ с = -2 $
График функции имеет вертикальную асимптоту $ х = 5 $, значит $ b = -5 $
По рисунку видно, что $ f(6) = 0 $, значит:
$ f(6) = {a}/{6 - 5} - 2 = 0 $
$ a = 2 $
Сумма равна: $ 2 - 5 -2 = -5 $
Задача 5
На рисунке изображен график функции вида $f(x)={{ax^2}+{bx}+{c}}$, где $a$, $b$, и $c$ - целые. Найдите значение $f(4,5)$.
Решение
По рисунку определяем, что $f(x)={-{(x+1)^2}+{5}={-x^2}-{2x}+{4}}$, значит, $a=-1, b=-2, c=4$. Тогда $f(4,5)={{-(4,5+1)^2}+5=-25,25}$.
Задача 6
На рисунке изображен график функции $f(x)={log_{a}{x} + b}$. Найдите $x$, при котором $f(x)=6$
Решение
По рисунку определяем, что ${f(x) = log_{1/2}{x} +4}$
Тогда $log_{1/2}{x} +{4}={6} ⇒ x=0,25$.
Задача 7
На рисунке изображен график функции $f(x)={{a^{x+b}}}$. Найдите $x$, при котором $f(x)=27$
Решение
По рисунку определяем, что $f(x)={{(√3)^{x-2}}}$.
Тогда ${{(√3)^{x-2}}}={27} ⇒ x=8$.
Задача 8
На рисунке изображён график функции вида $ f(x) = {a}/{x+b} + c $, где числа $a$, $b$ и $c$ — целые. Найдите решение уравнения $ f(x) = 18 $.
Решение
График функции имеет горизонтальную асимптоту $ y = 3 $, значит $ с = 3 $
График функции имеет вертикальную асимптоту $ х = -2 $, значит $ b = 2 $
По рисунку видно, что $ f(1) = 2 $, значит:
$ f(1) = {a}/{1 + 2} + 3 = 2 $
$ a = -3 $
$ f(x) = 18 ⇔ {-3}/{x+2} + 3 = 18 $
$ {-3}/{x+2} = 15 ⇔ 15x = - 33 $
Задача 9
На рисунке изображен график функции $f(x)={{a^x}+{b}}$. Найдите $f(2)$
Решение
По рисунку определяем, что $f(x)={{5^x}-{4}}$
Тогда, $f(2)={{5^2}-{4}=21}$
Задача 10
На рисунке изображен график функции $f(x)={{k}{√x}+{p}}$. Найдите $x$, при котором $f(x)=-9$
Решение
По рисунку определяем, что $f(x)={{-6}{√x}+{3}}$
Тогда ${{-6}{√x}+{3}}={-9} ⇒ x=4$.
Задача 11
На рисунке изображен график функции $f(x)={{k}{√(x+a)}+{b}}$. Найдите $f(14)$
Решение
По рисунку определяем, что $f(x)={{2}{√(x+2)}-{4}}$
Тогда, $f(14)={{2}{√(14+2)}-{4}=4}$
Задача 12
На рисунке изображены графики функции $f(x)={{k/x}}$ и $g(x)={{ax}+{b}}$, которые пересекаются в точках $A$ и $B$. Найдите абсциссу точки $B$
Решение
По рисунку определяем, что $f(x)={-{5/x}}$ и $g(x)={{-4x}+{8}}$
Чтобы найти абсциссу точки пересечения, приравниваем правые части функций:
${-{5/x}}={{-4x}+{8}} ⇒ x_1 = -0,5; x_2 = 2,5$
$x_2 = 2,5$ - абсцисса точки $A$, $x_1 = -0,5$ - абсцисса точки $B$
Задача 13
На рисунке изображен график функции $f(x)={{k/x}+{a}}$. Найдите $x$, при котором $f(x)=-3,5$
Решение
По рисунку определяем, что $f(x)={-{5/x}-{3}}$.
Тогда ${-{5/x}-{3}}={-3,5} ⇒ x=10$.
Задача 14
На рисунке изображены графики функции $f(x)={{ax^2}+{bx}+{c}}$ и $g(x)={{kx}+{d}}$, которые пересекаются в точках $A(1;-5)$ и $B$. Найдите ординату точки $B$
Решение
По рисунку определяем, что $f(x)={{-(x+2)^2}+{4}}$ и $g(x)={{3x}-{8}}$
Чтобы найти абсциссу точки пересечения, приравниваем правые части функций:
${{-(x+2)^2}+{4}}={{3x}-{8}} ⇒ {{x^2}+{7x}-{8}=0} ⇒ x_1 = 1; x_2 = -8$
$x_1 = 1$ - абсцисса точки $A$, $x_2 = -8$ - абсцисса точки $B$.
Найдем ординату точки $B$: $g(-8)={{3×(-8)}-{8}=-32}$
Задача 15
на рисунке изображен график функции $f(x)={{ax^2}-{7x}+{c}}$. Найдите $f(-1,5)$
Решение
По рисунку определяем, что $f(x)={{-3x^2}-{7x}+{5}}$
Тогда, $f(-1,5)={{-3⋅(-1,5)^2}-{7×(-1,5)}+{5}=8,75}$
Задача 16
На рисунке изображен график функции вида $f(x)={{kx}+{b}}$. Найдите значение $f(-3)$.
Решение
По рисунку определяем, что $f(x)={{5x}-{7}}$. Тогда $f(-3)={{5×(-3)}-{7}=-22}$.
Задача 17
На рисунке изображен график функции $f(x)={{a^{x+b}}}$. Найдите $f(-6)$
Решение
По рисунку определяем, что $f(x)={{(1/4)^{x+3}}}$
Тогда, $f(-6)={{(1/4)^{-6+3}}=64}$
Задача 18
На рисунке изображён график функции вида $y=-{1} / {x+a}+c$, где $a$, $c$ — целые числа. Найдите $a$.
Решение
Задача 19
График функции $y={k} / {x}+b$ проходит через точки $(6; 8)$ и $(-2; 12)$. Найдите $b$.
Решение
Подставляя в уравнение $y={k} / {x}+b$ в качестве значения $x$ первую координату точки, вместо $y$ — вторую координату, получим систему уравнений $\{{\table {8={k} / {6}+b{,}}; {12={k} / {-2}+b{.}};}$ Вычтем из первого уравнения второе: $-4={k} / {6}+{k} / {2}$; $-4={2k} / {3}$; $k=-6$. Тогда $8={-6} / {6}+b$; $b=9$.
Задача 20
На рисунке изображен график функции $f(x)={{a^x}+{b}}$. Найдите $x$, при котором $f(x)=5$
Решение
По рисунку определяем, что $f(x)={{(1/2)^x}+{1}}$.
Тогда ${(1/2)^x}+{1}={5} ⇒ x=-2$.
Рекомендуемые курсы подготовки
- Узнаешь, как выглядят графики функций.
- Разберешься, как по данному графику определить, какая функция задана.
- Научишься решать все прототипы 11 задания профильной математики.
- Получишь море полезных материалов.
на бесплатном курсе Турбо ЕГЭ