Задание 11. Графики функций. ЕГЭ 2026 по математике профильного уровня

За это задание ты можешь получить 1 балл. На решение дается около 8 минут. Уровень сложности: повышенный.
Средний процент выполнения: 79%
Ответом к заданию 11 по математике (профильной) может быть целое число или конечная десятичная дробь.

Задачи для практики

Задача 1

На рисунке изображен график функции ${f(x) = {a}cos{x}+b}$. Найдите $b$

Решение

По рисунку определяем, что наибольшее значение функции 2, наименьшее 1. При пересечении оси $Oy$ функция принимает наименьшее значение, значит коэффициент $a=-0,5$ Функция принимает вид ${f(x) = {-0,5}cos{x}+b}$. Функция достигает наибольшего значения при $cos{x}=1 ⇒ b=1,5$

Ответ: 1.5
Показать решение
Бесплатный интенсив

Задача 2

На рисунке изображён график функции вида $ f(x) = {a}/{x+b} + c $, где числа $a$, $b$ и $c$ — целые. Найдите сумму коэффициентов $ a + b + c $.

Решение

График функции имеет горизонтальную асимптоту $ y = -2 $, значит $ с = -2 $

График функции имеет вертикальную асимптоту $ х = 2 $, значит $ b = -2 $

По рисунку видно, что $ f(4) = 0 $, значит:

$ f(4) = {a}/{4 - 2} - 2 = 0 $

$ a = 4 $

Сумма равна: $ 4 - 2 - 2 = 0 $

Ответ: 0
Показать решение
Бесплатный интенсив

Задача 3

На рисунке изображен график функции $f(x)={{k}{√x}+{p}}$. Найдите $x$, при котором $f(x)=-9$

Решение

По рисунку определяем, что $f(x)={{-6}{√x}+{3}}$

Тогда ${{-6}{√x}+{3}}={-9} ⇒ x=4$.

Ответ: 4
Показать решение
Бесплатный интенсив

Задача 4

На рисунке изображён график функции вида $y=√ {x+c}$, где $c$ — целое число. Найдите $c$.

Решение

По рисунку в условии задачи заметим, что график функции $y=√ {x+c}$ получается из графика функции $y=√ {x}$, смещением на $4$ единицы влево. Таким образом, изображён график функции $y=√ {x-(-4)}=√ {x+4}$ и $c=4$.

Ответ: 4
Показать решение
Бесплатный интенсив

Задача 5

На рисунке изображён график функции вида $y=a^x$, где $a$ — целое число. Найдите $y(4)$.

Решение
Ответ: 625
Показать решение
Бесплатный интенсив

Задача 6

На рисунке изображён график функции вида $y=\log_a{x}$, где $a$ — целое число. Найдите $a$.

Решение

На рисунке изображён график функции $y = \log_a{x}$, где $a$ — целое число. Для определения основания $a$ воспользуемся подстановкой известной точки, лежащей на графике.

График проходит через точку (5; 1). Это означает, что при $x = 5$, значение функции $y = 1$. Подставим эти значения в уравнение функции:

$y = \log_a{x}$

Подставляем $x = 5$ и $y = 1$:

$1 = \log_a{5}$

По определению логарифма это равенство эквивалентно:

$a^1 = 5$

Следовательно, основание $a = 5$.

Проверка:

Если $a = 5$, то функция $y = \log_5{x}$ проходит через точку {1; 0}, так как $\log_5{1} = 0$, и через точку {5; 1}, так как $\log_5{5} = 1$.

Ответ: $a = 5$.

Ответ: 5
Показать решение
Бесплатный интенсив

Задача 7

На рисунке изображён график функции вида $y=ax^2+bx+c$, где числа $a$, $b$ и $c$ — целые. Найдите $b$.

Решение

На рисунке изображён график функции $y=ax^2+bx+c$, где $a<0$,
так как ветви параболы направлены вниз. Если по горизонтальной оси отступить от вершины на $1$ вправо или влево, то можно заметить, что значение функции при этом уменьшается на $3$. Поэтому заданный график получается из графика параболы $y=-3x^2$, смещением на $4$ единицы вправо и на $2$ вверх. Таким образом, изображён график функции $y=-3(x-4)^2+2=-3x^2+24x-46$. Отсюда $b=24$.

Ответ: 24
Показать решение
Бесплатный интенсив

Задача 8

На рисунке изображен график функции $f(x)={{k/x}+{a}}$. Найдите $f(-4)$

Решение

По рисунку определяем, что $f(x)={{2/x}+{3}}$

Тогда, $f(-4)={{2/(-4)}+{3}=2,5}$

Ответ: 2.5
Показать решение
Бесплатный интенсив

Задача 9

На рисунке изображён график функции вида $y=kx+b$.
Найдите $y(-14)$.

Решение

По рисунку в условии задачи определяем координаты выделенных точек: $(-4;-2)$ и $(4;-4)$. Тангенс угла наклона $k={-2-(-4)} / {-4-4}=-{1} / {4}$. $b=y(0)=-3$. Уравнение прямой имеет вид: $y=-{x} / {4}-3$. Отсюда $y(-14)=-{-14} / {4}-3=0{,}5$.

Ответ: 0.5
Показать решение
Бесплатный интенсив

Задача 10

На рисунке изображён график функции вида $y=ax^2+bx+c$, где числа $a$, $b$ и $c$ — целые. Найдите $y(-18)$.

Решение

По рисунку в условии задачи заметим, что график получается из графика параболы $y=-x^2$, смещённой на $3$ единицы влево и на $3$ вверх. Таким образом, изображён график функции $y=3-(x+3)^2$. Отсюда $y(-18)=3-(15)^2=-222$.

Ответ: -222
Показать решение
Бесплатный интенсив

Задача 11

На рисунке изображён график функции вида $y=kx+b$. Найдите $y(-18)$.

Решение


Посмотри на формулу функции $y = kx + b$. Здесь $k$ — это тангенс угла наклона прямой, а $b$ — это ордината точки пересечения с осью $y$. 📈

1. Определи, в какой точке прямая пересекает ось $y$, чтобы найти $b$.

2. Найди $k$, вычислив тангенс угла наклона прямой. Пользуйся выделенными точками, лежащими в узлах клеток 🌟

3. Как найдешь $k$ и $b$, подставляй $x = -18$ в уравнение функции, чтобы найти $y(-18)$.

Получили $y=0.6x-1.6$

Получили $y(-18)=0.6*(-18)-1.6=-12.4$

Ответ: -12.4
Показать решение
Бесплатный интенсив

Задача 12

На рисунке изображен график функции ${f(x) = {a}sin{x}+b}$. Найдите $a$

Решение

По рисунку определяем, что наибольшее значение функции 2, наименьшее -4. Справа оси $Oy$ точка максимума, значит коэффициент $a=3$

Ответ: 3
Показать решение
Бесплатный интенсив

Задача 13

На рисунке изображен график функции $f(x)={log_{a}{x} + b}$. Найдите $x$, при котором $f(x)=6$

Решение

По рисунку определяем, что ${f(x) = log_{1/2}{x} +4}$

Тогда $log_{1/2}{x} +{4}={6} ⇒ x=0,25$.

Ответ: 0.25
Показать решение
Бесплатный интенсив

Задача 14

На рисунке изображен график функции $f(x)={{a^x}+{b}}$. Найдите $x$, при котором $f(x)=5$

Решение

По рисунку определяем, что $f(x)={{(1/2)^x}+{1}}$.

Тогда ${(1/2)^x}+{1}={5} ⇒ x=-2$.

Ответ: -2
Показать решение
Бесплатный интенсив

Задача 15

На рисунке изображен график функции $f(x)={{a^x}+{b}}$. Найдите $f(2)$

Решение

По рисунку определяем, что $f(x)={{5^x}-{4}}$

Тогда, $f(2)={{5^2}-{4}=21}$

Ответ: 21
Показать решение
Бесплатный интенсив

Задача 16

На рисунке изображены графики функции $f(x)={{k/x}}$ и $g(x)={{ax}+{b}}$, которые пересекаются в точках $A$ и $B$. Найдите абсциссу точки $B$

Решение

По рисунку определяем, что $f(x)={-{5/x}}$ и $g(x)={{-4x}+{8}}$

Чтобы найти абсциссу точки пересечения, приравниваем правые части функций:

${-{5/x}}={{-4x}+{8}} ⇒ x_1 = -0,5; x_2 = 2,5$

$x_2 = 2,5$ - абсцисса точки $A$, $x_1 = -0,5$ - абсцисса точки $B$

Ответ: -0.5
Показать решение
Бесплатный интенсив

Задача 17

На рисунке изображены графики функции $f(x)={{ax^2}+{bx}+{c}}$ и $g(x)={{kx}+{d}}$, которые пересекаются в точках $A(1;-5)$ и $B$. Найдите ординату точки $B$

Решение

По рисунку определяем, что $f(x)={{-(x+2)^2}+{4}}$ и $g(x)={{3x}-{8}}$

Чтобы найти абсциссу точки пересечения, приравниваем правые части функций:

${{-(x+2)^2}+{4}}={{3x}-{8}} ⇒ {{x^2}+{7x}-{8}=0} ⇒ x_1 = 1; x_2 = -8$

$x_1 = 1$ - абсцисса точки $A$, $x_2 = -8$ - абсцисса точки $B$.

Найдем ординату точки $B$: $g(-8)={{3×(-8)}-{8}=-32}$

Ответ: -32
Показать решение
Бесплатный интенсив

Задача 18

На рисунке изображен график функции $f(x)={{ax^2}+{bx}+{c}}$, где $a, b$, и $c$ - целые числа. Найдите $f(-15)$

Решение

По рисунку определяем, что $f(x)={{(x+3)^2}-{2}}$

Тогда, $f(-15)={{(-15+3)^2}-{2}=142}$

Ответ: 142
Показать решение
Бесплатный интенсив

Задача 19

На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков

Решение

По рисунку определяем, что $f(x)={{x}-{6}}$ и $g(x)={{0,4x}+{7,2}}$.

Чтобы найти абсциссу точки пересечения графиков, приравняем правые части функций: ${{x}-{6}}={{0,4x}+{7,2}} ⇒ {x=22}$ - абсцисса точки пересечения

Ответ: 22
Показать решение
Бесплатный интенсив

Задача 20

На рисунке изображен график функции вида $f(x)={{kx}+{b}}$. Найдите значение $x$, при котором $f(x)=-17$.

Решение

По рисунку определяем, что $f(x)={{-2,75x}-{6}}$.

Тогда ${{-2,75x}-{6}}={-17} ⇒ x=4$.

Ответ: 4
Показать решение
Бесплатный интенсив
Показать еще
  • Без воды
  • Ламповая атмосфера
  • Крутые преподаватели

ЕГЭ 2026: бесплатный курс
по математике (профильной)

На бесплатном демо-курсе ты:
  • Узнаешь, как выглядят графики функций.
  • Разберешься, как по данному графику определить, какая функция задана.
  • Научишься решать все прототипы 11 задания профильной математики.
  • Получишь море полезных материалов.
Получи бесплатный демо-доступ
Оставь заявку и займи место
на бесплатном курсе Турбо ЕГЭ
Нажимая на кнопку «Отправить», вы принимаете положение об обработке персональных данных.