Задание 15. Неравенства. ЕГЭ 2026 по математике профильного уровня

За это задание ты можешь получить 2 балла. На решение дается около 25 минут. Уровень сложности: повышенный.
Средний процент выполнения: 2.7%
Ответом к заданию 15 по математике (профильной) может быть развернутый ответ (полная запись решения с обоснованием выполненных действий).

Что нужно знать, чтобы решить задание 15:

Необходимо свести сложное неравенство к простейшему. Для этого нужно знать метод замены показательных и тригонометрических функций, помня про ограничения. Знать метод интервалов и метод рационализации для логарифмических, показательных и содержащих модуль неравенств.

Задачи для практики

Показать еще

В задании №15 требуется решить один из видов неравенств:

  • Рациональное неравенство
  • Показательное неравенство
  • Логарифмическое неравенство, возможно с переменным основанием
  • Неравенство с радикалом
  • Смешанное неравенство, которое может содержать несколько видов одновременно

Получить за решение этого задания можно 2 первичных балла. Потерять 1 балл можно при вычислительной ошибке, при условии что имеется верная последовательность всех шагов решения.

Статистика выполнения задания 15 ЕГЭ по профилю по годам
Статистика выполнения задания №15 по годам

Метод интервалов

  1. Решить уравнение f(x) = 0. Так мы найдем нули функции, от которых зависит знак неравенства. Удобно отдельно находить нули числителя и нули знаменателя.
  2. Отметить все полученные корни (нули) на координатной прямой. Получим несколько интервалов.
  3. Выяснить знак (плюс или минус) функции f(x) на самом правом интервале. Для этого достаточно подставить в f(x) очень большое число, например, 1 000 000.
  4. Отметить знаки на остальных интервалах. Для этого достаточно запомнить, что при переходе через каждый корень знак меняется. НО есть одно исключение:
    При переходе через нуль мы можем поменять знак на противоположный, если степень выражения, дающего этот нуль, нечетная, и не можем поменять знак, если степень четная.

Пример 1

При переходе через нуль мы можем поменять знак на противоположный, если степень выражения, дающего этот нуль, нечетная, и не можем поменять знак, если степень четная.

Пример 2

В случае с нестрогими неравенствами( ≤ , ≥) необходимо включить в интервалы точки, которые являются решением уравнения f(x) = 0;

Пример 3

Знак правого промежутка был «+». Единственный нуль четной степени x = 10, поэтому в этом нуле знак не меняем. В остальных нулях чередуем знак.

Пример неравенства №15

Оформление задания №15 на ЕГЭ по математике
Оформление задачи №15

Еще больше крутых лайфхаков, разборов, ловушек ЕГЭ и теории в нашей группе вконтакте и инсте преподавателей @turboegemath и @turbomath

  • Без воды
  • Ламповая атмосфера
  • Крутые преподаватели

ЕГЭ 2026: бесплатный курс
по математике (профильной)

На бесплатном демо-курсе ты:
  • Узнаешь, как выглядят графики функций.
  • Разберешься, как по данному графику определить, какая функция задана.
  • Научишься решать все прототипы 11 задания профильной математики.
  • Получишь море полезных материалов.
Получи бесплатный демо-доступ
Оставь заявку и займи место
на бесплатном курсе Турбо ЕГЭ
Нажимая на кнопку «Отправить», вы принимаете положение об обработке персональных данных.