Бесплатный интенсив по физике
3 огненных вебинара, домашние задания, беседа курса, личный кабинет, связь с преподавателем и
многое другое.
Курс стартует 23 января.
Подробнее об интенсиве

Задание 25. Электродинамика (расчетная задача высокого уровня). ЕГЭ 2024 по физике
Средний процент выполнения: 34.9%
Ответом к заданию 25 по физике может быть целое число или конечная десятичная дробь.
Задачи для практики
Задача 1
Автомобиль потребляет 10 л бензина на 100 км пути при скорости 108 км/ч. Определите КПД двигателя, если его мощность равна 50 кВт. Удельная теплота сгорания бензина 4,6 · 107 Дж/кг, плотность бензина ρ = 700 кг/м3.
Решение
Дано:
$V=10·10^{-3}м^3$
$ρ=700{кг}/{м^3}$
$q=4.6·10^7$Дж/кг
$S=10^5$м
$υ=108=30$м/с
$p=5·10^4Вт$
$η-?$
Решение:
КПД нагревателя определяется выражением: $η={A_{полез}}/{A_{затр}}·100%$(1), $A_{полез}=ρ·t$(2), где $t={S}/{υ}$(3) - время движения авто. $A_{затр}=Q=qm=q·ρ·V$(4), где $m=ρ·V$(5) - масса бензина. Подставим (2) и (4) с учетом (3) и (5) в (1) получим: $η={p·S}/{υ·q·ρ·V}·100%={5·10^4·10^5·100%}/{30·4.6·10^7·700·10^{-2}}={5·10^9·100%}/{9.66·10^9}=51.76%=51.8%$.
Задача 2
Электрон прошёл ускоряющую разность потенциалов 100 В и влетел в однородное магнитное поле индукцией 5 · 10−4 Тл перпендикулярно сило вым линиям поля. Определите радиус траектории электрона в этом поле.Ответ дать в см.
Решение
Дано:
$U=100B$
$e=1.6·10^{-19}$Кл
$m_e=9.11·10^{-31}$кг
$B=5·10^{-4}$Tл
$α=90^o$
$R-?$
Решение:
Так как электрон влетел в однородное магнитное поле под прямым углом, то он будет двигаться по окружности радиуса $R$, где на него будут действовать сила Лоренца, которые будет задавать электрону центростремительное ускорение: $F_л=m_ea_{ц.с.}=eυB·sinα$, где $sinα=sin90=1$, $a_{ц.с.}={υ^2}/{R}; m_e{υ^2}/{R}=eυB$, откуда $R={m_eυ}/{eB}$(1). Скорость электрона $υ$ найдем из уравнения: $eU={m_eυ^2}/{2}$, откуда $υ=√{{2eU}/{m_e}}$(2), где $e$ - заряд электрона, $m$ - масса электрона.
Подставим (2) в (1): $R={m_e·√{{2eU}/{m_e}}}/{e·B}={√{2m_e·e·U}}/{e·B}={√{2m_e·U}·√{e}}/{√{e}·√{e}·B}={√{2m_e·U}}/{√{e}·B}={√{2·9.11·10^{-31}·100}}/{5·10^{-4}·√{1.6·10^{-19}}}={13.498·10^{-15}}/{20·10^{-4}·10^{-10}}=0.067=6.7$см.
Задача 3
Тонкая шёлковая нить выдерживает силу натяжения 9,8 · 10−3 Н. Подвешенный на этой нити шарик массой 0,67 г имеет заряд q1 = 1,1 · 10−9 Кл. Снизу в направлении линии подвеса на расстоянии 1,8 см к нему подносят шарик, имеющий заряд q2 противоположного знака. При каком модуле заряда q2 нить может разорваться? Ответ выразите в (нКл) и округлите до целых.
Решение
Дано:
$r=1.8·10^{-2}$м
$m=0.67·10^{-3}$кг
$q_1=1.1·10^{-9}$Кл
$k=9·10^{9}{Н·м^}/{Кл^}$
$q_2-?$
Решение:
Из рисунка видно, что сила натяжения нити $F↖{→}$ равна сумме силы тяжести $mg↖{→}$ и силы Кулона ${F_к}↖{→}$: $F=mg+F_к$(1), где $F_к={k·|q_1|·|q_2|}/{r^2}$(2).
Подставим (2) в (3) и выразим $q_2$: $F=mg+{k·|q_1|·|q_2|}/{r^2}⇒q_2={(F-mg)·r^2}/{k|q_1|}$(3).
Подставим числовые значения в (3): $|q_2|={(9.8·10^{-3}-0.67·10^{-3}·10)·3.24·10{-4}}/{9·10^{9}·1.1·10^{-9}}={3.1·10^{-3}·3.24·10^{-4}}/{9·1.1}=1.01·10^{-7}=101·10^{-9}=101$нКл.
Задача 4
Электрон прошёл ускоряющую разность потенциалов 100 В и влетел в однородное электрическое поле напряжённостью 2·103 В/м в направлении силовых линий поля. Определите расстояние, которое электрон пролетел до остановки.
Решение
Дано:
$U=100B$
$e=1.6·10^{-19}$Кл
$E=2·10^3$В/м
$S-?$
Решение:
Если разность потенциалов $U$ ускоряющая, то работа ускоряющего электрон поля $A_1=|q|U$ ($q=e$ - заряд электрона) равна увеличению кинетической энергии электрона: $E_к-E_{к0}=A$.
Кинетическая энергия после прохождения ускоряющей разности потенциалов: $E_к={mv^2}/2$, где $m$ - масса электрона, $v$ - скорость, которую приобрёл электрон.
Так как начальная скорость равна нулю, начальная кинетическая энергия тоже равна нулю: $E_{к0}=0$.
Из (1) получим ${mv^2}/2=eU$
Когда электрон влетает в однородное электрическое поле, скорость его уменьшается до нуля, поскольку на него действует сила Кулона: $F_к=e·E$(2). Сила Кулона совершает работу: $A=-F_к·S$ (2), которая равна изменению энергии электрона $A=E_{к2}-E_к$ (3). Здесь $E_{к2}=0$ - конечная кинетическая энергия электрона (когда он остановился), $E_к={mv^2}/2$ - найденная ранее кинетическая энергия электрона после прохождения ускоряющей разности потенциалов.
Приравняв (2) и (3) получим: $-e·E·S=-{mv^2}/2$ (4).
Приравняв (1) и (4), получим: $eE·S=eU⇒S={U}/{E}$(3). Подставим числа: $S={100}/{2·1000}={1}/{20}=0.05м=5$см.
Задача 5
Свинцовая пуля массой 10 г, летящая со скоростью 400 м/с, пробивает деревяный шар массой 1 кг, висящий на прочной нити, и вылетает из него со скоростью 300 м/с. Определите увеличение температуры пули после пробивания шара, если на её нагревание идёт 60% потери кинетической энергии системы «пуля–шар». Удельная теплоёмкость свинца $c=140$Дж/кг·С. Ответ выразите в кельвинах и округлите до десятых.
Решение
Дано:
$m_1=10^{-2}$кг
$υ_1=400$м/с
$m_2=1$кг
$υ_2=300$м/с
$c=140$Дж/кг·С
$Q=0.6∆E_к$
$∆T-?$
Решение:
Рассчитаем потери кинетической энергии системы "пуля-шар": $∆E_к={mυ_1^2}/{2}-{mυ_2^2}/{2}={m}/{2}·(υ_1^2-υ_2^2)={10^{-2}}/{2}(16·10^4-9·10^4)={7·10^2}/{2}=350$Дж.
Количество теплоты, которое получает пуля равно: $Q=cm·∆t$(2), где $c$ - удельная теплоемкость свинца, $c=140$Дж/кг·С.
По условию задачи: $Q=0.6·∆E_к$, откуда $∆t={0.6∆E_к}/{cm}$(3). Подставим числовые значения в (3): $∆t={0.6·350}/{10^{-2}·140}=150°C$. Поскольку $1°C=1K$, то $∆t=∆T=150K$
Задача 6
Прямой проводник с током 2 А находится в однородном магнитном поле с индукцией 10 Тл. Угол между направлением тока в проводнике и линиями индукции магнитного поля равен 30◦. Определите активную длину проводника, если к нему приложена сила 2 Н. Ответ выразите в (м).
Решение
Дано:
$J=2A$
$B=10$Тл
$α=30°$
$F_A=2H$
$l-?$
Решение:
На проводнике с током в однородном магнитном поле действует сила Ампера: $F_A=J·B·l·sinα$(1), где $l$ - длина проводника. Выразим $l$ из (1): $l={F_A}/{J·B·sinα}$(2). Подставим числовые значения в (2): $l={2}/{2·10·sin30°}={1}/{10·0.5}={1}/{5}=0.2$м.
Задача 7
Два моля одноатомного газа, находящегося в цилиндре при температуре T1 = 200 К и давлении 2·105 Па, расширяется и одновременно охлаждается так, что его давление (p) в этом процессе обратно пропорционально объёму в кубе (V3). Какое количество теплоты газ отдал при расширении, если при этом он совершил работу A = 939,5 Дж, а его давление стало равным 0,25 · 105 Па?
Решение
Дано:
$υ=2$моля
$T_1=200K$
$P_1=2·10^5$Па
$A=939.5$Дж
$P_2=0.25·10^5$Па
$Q-?$
Решение:
1) Уравнение Менделеев-Клайперона: $pV=υRT$
$\{\table\U_1={3}/{2}υRT_1; \U_2={3}/{2}υRT_2;$ $∆U={3}/{2}υR(T_2-T_1)$
Давление обратно пропорционально убу объёма, поэтому: ${p_1}/{p_2}=(V_2)^3/(V_1)^3$.
${p_1}/{p_2}={2·10^5}/{0.25·10^5}=8$, тогда ${V_2}/{V_1}=√^3{p_1/p_2}=2$
Из уравнений Менделеева-Клапейрона для двух состояний газов: ${p_1V_1}/{T_1}={p_2V_2}/{T_2}$. Тогда $T_2={p_2V_2}/{p_1V_1}T_1=1/4T_1=1/4·200=50K$.
$Q=A+∆U⇒939.5+{3}/{2}·2·8.31(50-200)=-2800$кДж.
Значит газ отдал 2,8 кДж теплоты.
Задача 8
Два моля одноатомного газа, находящегося в цилиндре при температуре 400 К и давлении 4 · 105 Па, расширяются и одновременно охлаждаются так, что его давление в этом процессе обратно пропорционально объёму в кубе (V3). Какую работу совершил газ при расширении, если он отдал количество теплоты 1979 Дж, а его давление стало равным 0,5 · 105 Па?
Решение
1) Первое начало термодинамики $-Q=∆U+A$, $∆U={3}/{2}υRT$, по условию $p={α}/{V^3}⇒V={α}/{√^3{p}}$.
2) По закону Менделеева-Клайперона $pV=υRT$.
3) Определим конечную температуру: $T_2=T_1√^3{{p_2}/{p_1}}=400√{{0.5·10^5}/{4·10^5}}=200K$.
4) Таким образом $A=-Q-∆U=-1979-{3}/{2}·2·8.31(200-400)=5.5$кДж.
Задача 9
Поток фотонов выбивает фотоэлектроны из металла с работой выхода 4 эВ. Энергия фотонов в 1,25 раза больше максимальной кинетической энергии фотоэлектронов. Какова энергия фотонов? Ответ выразите в (эВ).
Решение
Дано:
$A_{вых}=4$эВ
$hυ=E_к·1.25$
$hυ-?$
Решение:
$hυ=4эВ+{hυ}/{1.25}$ - уравнение фотоэффекта.
$0.2·hυ=4эВ$.
$hυ=20$эВ
Задача 10
1 м3 влажного воздуха при относительной влажности B = 60%, температуре T = 293 K и нормальном атмосферном давлении имеет массу M = 1,2004 кг. Определите давление насыщающего водяного пара при температуре T .
Решение
Дано:
$B=60%$
$T=293K$
$V=1м^3$
$P_н=10^5$Па
$M=1,2004$кг
$P_{нп}-?$
Решение:
Уравнение Менделеева-Клайперона:
$\{\table\P_1·V=υ_1·RT; \P_2V=υ_2·RT;$ $⇒P_1+P_2=(υ_1+υ_2)·8.31·293$.
$P_1+P_2=P_н; υ_1+υ_2={100000}/{2434.83}=41.6$моль.
Тогда $\{\table\υ_1·0.018+υ_1·0.029=1.2004; \υ_2=41.6-υ_1;$ $⇒υ_1=0.545$моль.
$P_1={υ_1·RT}/{V}={0.545·8.31·293}/{1}=1370$Па.
Задача 11
Какой частоты свет следует направлять на поверхность вольфрама, чтобы максимальная скорость фотоэлектронов была равна 10^6 м/c? Работа выхода электрона из вольфрама 4,5 эВ. $h={6.6·10^{-34}}$. Ответ округлите до сотых. Ответ выразите в (·1015 Гц).
Решение
Дано:
$υ_{max}=10^6$м/c
$А_{вых}-?$
$v-?$
Решение:
По уравнению фотоэффекта: $hv=А_{вых}+{mυ_{max}^2}/{2}$
$v={А_{вых}+0.5·m·υ_{max}^2}/{h}={4.5·1.6·10^{-19}+0.5·9.1·10^{-31}·10^{12}}/{6.6·10^{-34}}=1.78·10^{15}$Гц.
Задача 12
Чему равен импульс фотона, если соответствующая длина волны равна 600 нм? $h=6.62·10^{-34}$. Ответ выразите в (·10−27 кг·м/с) и округлите до десятых
Решение
Дано:
$λ=600·10^{-9}м$
$p↖{→}-?$
Решение:
$p↖{→}={hυ}/{c}={h}/{λ}={6.62·10^{-34}}/{600·10^{-9}}=1.1·10^{-27}$.
Задача 13
Плоское зеркало движется со скоростью V = 1,5 см/с. С какой по модулю скоростью должен двигаться точечный источник света S, чтобы его отражение в плоском зеркале было неподвижным? Ответ выразите в (см/с).
Решение
Дано:
$υ=1.5м/с$
$U-?$
Решение:
Так как увеличивается расстояние от источника до зеркала "повторяется" внутри зеркала в изменении расстояния до изображения $U={1.5}*{2}={U}*{2}=3 м/с$.
Задача 14
Сопротивления 400 Ом и 200 Ом включены последовательно в электрическую цепь. Какое количество теплоты выделится на втором сопротивлении, если на первом за то же время выделилось 6 кДж теплоты? Ответ выразите в (кДж).
Решение
Дано:
$R_1=400$Ом
$R_2=200$Ом
$Q_2-?$
$Q_1=6$кДж
Решение:
Соединение последовательное $I=I_1=I_2$, а $U=U_1+U_2$, $R=R_1+R_2$.
$Q_2=I^2R_2t$
$Q_1=I^2R_1t$, следовательно $I^2={Q_1}/{R_1t}$
$Q_2={Q_1R_2t}/{R_1t}={Q_1R_2}/{R_1}={6·10^3·200}/{400}=3$кДж
Задача 15
На катушку электрического звонка намотана медная проволока длиной 14,4 м. Найдите площадь поперечного сечения проволоки, если сопротивление катушки равно 0,68 Ом. Ответ выразите в (мм2) и округлите до сотых.
Удельное сопротивление меди берите за 0.018 ${Ом·мм^2}/ м$Решение
Дано:
$l=14.4$м
$R=0.68$Ом
$S-?$
$ρ=0.018{Ом·мм^2}/ м$
Решение:
$R=ρ{l}/{S}$ - уравнение для определения сопротивления.
$S={ρl}/{R}={0.018·14.4}/{0.68}=0.38мм^2$
Задача 16
В комнате размером V = 10 × 5 × 3 м3 поддерживается температура T1 = 373 K, давление сухого воздуха равно 200кПа, а водяного пара 80кПа. Определите относительную влажность воздуха.
Решение
Дано:
$V=10·5·3м^3$
$T_1=373K$
$ϕ_{отн}$ ?
Решение:
При $T=373К$ пар Pнасыщ. = 100кПа => относительная влажность $ϕ_{отн}$ = $P/P_{н}$*100% = $80/100$ *100% = 80%
Задача 17
Тело массой 1 кг совершает гармонические колебания по закону x = 0,5 cos(4t − π/4). Определите максимальную кинетическую энергию тела. Ответ выразите в (Дж).
Решение
Дано:
$x=0.5cos(4t-{π}/{4})$
$m=1$кг
$E_{к}max-?$
Решение:
$υ(t)=x'(t)=-2·sin(4t-{π}/{4})$.
$E_{к}max={m·υ^2}/{2}={1·4}/{2}=2$Дж. Так как скорость производная пути.
Задача 18
Идеальный одноатомный газ расширяется сначала адиабатически, а затем изобарно так, что начальная и конечная температуры одинаковы. Работа, совершённая газом за весь процесс, равна 10 кДж. Какую работу совершил газ при адиабатическом расширении?
Решение
Решение:
Происходящие с газом в данной задаче процессы в координатах pV выглядят вот так:
Согласно первому закону термодинамики, общее количество теплоты Q, полученное газом в процессах 12 и 23, идёт на изменение внутренней энергии газа $∆U$ и совершение газом работы $A$: $Q=∆U+A$ (1)
$Q=Q_{12}+Q_{23}$. Так как процесс 12 адиабатный, $Q_{12}=0$, значит $Q=Q_{23}$
$∆U=U_3-U_1={3}/{2}vRT_{3}-{3}/{2}vRT_{1}={3}/{2}vR(T_{3}-T_1)=0$, т.к. $T_3=T_1$ по условию.
Ур-е (1) примет вид: $Q_{23}=A$ (2)
$A=A_{12}+A_{23}$ (3) - полная работа газа складывается из работ газа в каждом процессе.
Согласно первому закону термодинамики для изобарного процесса 23: $Q_{23}=A_{23}+∆U_{23}$ (4)
В изобарном процессе работа газа $A_{23}=p(V_3-V_2)$, а изменение внутренней энергии: $∆U_{23}=3/2p(V_3-V_2)=3/2A_{23}$.
Уравнение (4) примет вид: $Q_{23}=A_{23}+3/2А_{23}=5/2A_{23}$.
Тогда с учётом ур-я (2) $A_23=2/5Q_{23}=2/5A$
Подставим полученное выражение для $A_{23}$ в ур-е (3): $A=A_{12}+2/5A$ => $A_{12}=A-2/5A=3/5A=3/5·10кДж=6кДж$
Задача 19
Чему равен потенциал, до которого может зарядиться металлическая пластина, работа выхода электронов из которой 1,6 эВ, при длительном освещении потоком фотонов с энергией 4 эВ? Ответ выразите в (В).
Решение
Дано:
$A_{вых}=1.6$эВ
$hυ=4$эВ
$U_з-?$
Решение:
По уравнению Эйнштейна определим задерживающее $U(B)$: $hυ=A_{вых}+eU_з$
$eU_з=hυ-A_{вых}=4эВ-1.6эВ=2.4$эB
$U_з=2.4$B
Задача 20
Лазер излучает световые импульсы с энергией 200 мДж. Частота повторения импульсов 10 Гц. КПД лазера, определяемый отношением излучаемой энергии к потребляемой, составляет 4,0%. Какой объём воды нужно прокачать за один час через охлаждающую систему лазера, чтобы вода нагрелась не более чем на 5,0◦С?
Решение
Дано:
$E=200$мДж
$υ=10$Гц
$t=1$час
$∆t′=5°$
$η=4%$
$V_в-?$
Решение:
1) Мощность излучения $P_{изл}=W·υ$.
2) Потребляемая мощность $P_л={P_{изл}}/{η}$
3) Мощность охлаждения: $P_{охл}=P_л-P_{изл}=P_{изл}{(1-η)}/{η}$
4) $Q_{охл}=P_{охл}·t$ выразим через числовой баланс $Q_{охл}=ρ·υ·c·∆t$
5) Выразим и получим $V={W·υ·T}/{ρ·c·∆t′}·{1-η}/{η}={200·10^{-3}·10·3600}/{1000·4.2·10^3·5}·{1-0.04}/{0.04}=8.2л$