Бесплатный интенсив по физике

3 огненных вебинара, домашние задания, беседа курса, личный кабинет, связь с преподавателем и многое другое.
Курс стартует 23 января.

Подробнее об интенсиве

Задание 25. Электродинамика (расчетная задача высокого уровня). ЕГЭ 2024 по физике

За это задание ты можешь получить 3 балла. Уровень сложности: повышенный.
Средний процент выполнения: 34.9%
Ответом к заданию 25 по физике может быть целое число или конечная десятичная дробь.
Разбор сложных заданий в тг-канале

Задачи для практики

Задача 1

Автомобиль потребляет 10 л бензина на 100 км пути при скорости 108 км/ч. Определите КПД двигателя, если его мощность равна 50 кВт. Удельная теплота сгорания бензина 4,6 · 107 Дж/кг, плотность бензина ρ = 700 кг/м3.

Решение

Дано:

$V=10·10^{-3}м^3$

$ρ=700{кг}/{м^3}$

$q=4.6·10^7$Дж/кг

$S=10^5$м

$υ=108=30$м/с

$p=5·10^4Вт$

$η-?$

Решение:

КПД нагревателя определяется выражением: $η={A_{полез}}/{A_{затр}}·100%$(1), $A_{полез}=ρ·t$(2), где $t={S}/{υ}$(3) - время движения авто. $A_{затр}=Q=qm=q·ρ·V$(4), где $m=ρ·V$(5) - масса бензина. Подставим (2) и (4) с учетом (3) и (5) в (1) получим: $η={p·S}/{υ·q·ρ·V}·100%={5·10^4·10^5·100%}/{30·4.6·10^7·700·10^{-2}}={5·10^9·100%}/{9.66·10^9}=51.76%=51.8%$.

Ответ: 51.8
Показать решение
Бесплатный интенсив

Задача 2

Электрон прошёл ускоряющую разность потенциалов 100 В и влетел в однородное магнитное поле индукцией 5 · 10−4 Тл перпендикулярно сило вым линиям поля. Определите радиус траектории электрона в этом поле.Ответ дать в см.

Решение

Дано:

$U=100B$

$e=1.6·10^{-19}$Кл

$m_e=9.11·10^{-31}$кг

$B=5·10^{-4}$Tл

$α=90^o$

$R-?$

Решение:

Так как электрон влетел в однородное магнитное поле под прямым углом, то он будет двигаться по окружности радиуса $R$, где на него будут действовать сила Лоренца, которые будет задавать электрону центростремительное ускорение: $F_л=m_ea_{ц.с.}=eυB·sinα$, где $sinα=sin90=1$, $a_{ц.с.}={υ^2}/{R}; m_e{υ^2}/{R}=eυB$, откуда $R={m_eυ}/{eB}$(1). Скорость электрона $υ$ найдем из уравнения: $eU={m_eυ^2}/{2}$, откуда $υ=√{{2eU}/{m_e}}$(2), где $e$ - заряд электрона, $m$ - масса электрона.

Подставим (2) в (1): $R={m_e·√{{2eU}/{m_e}}}/{e·B}={√{2m_e·e·U}}/{e·B}={√{2m_e·U}·√{e}}/{√{e}·√{e}·B}={√{2m_e·U}}/{√{e}·B}={√{2·9.11·10^{-31}·100}}/{5·10^{-4}·√{1.6·10^{-19}}}={13.498·10^{-15}}/{20·10^{-4}·10^{-10}}=0.067=6.7$см.

Ответ: 6.7
Показать решение
Бесплатный интенсив

Задача 3

Тонкая шёлковая нить выдерживает силу натяжения 9,8 · 10−3 Н. Подвешенный на этой нити шарик массой 0,67 г имеет заряд q1 = 1,1 · 10−9 Кл. Снизу в направлении линии подвеса на расстоянии 1,8 см к нему подносят шарик, имеющий заряд q2 противоположного знака. При каком модуле заряда q2 нить может разорваться? Ответ выразите в (нКл) и округлите до целых.

Решение

Дано:

$r=1.8·10^{-2}$м

$m=0.67·10^{-3}$кг

$q_1=1.1·10^{-9}$Кл

$k=9·10^{9}{Н·м^}/{Кл^}$

$q_2-?$

Решение:

Из рисунка видно, что сила натяжения нити $F↖{→}$ равна сумме силы тяжести $mg↖{→}$ и силы Кулона ${F_к}↖{→}$: $F=mg+F_к$(1), где $F_к={k·|q_1|·|q_2|}/{r^2}$(2).

Подставим (2) в (3) и выразим $q_2$: $F=mg+{k·|q_1|·|q_2|}/{r^2}⇒q_2={(F-mg)·r^2}/{k|q_1|}$(3).

Подставим числовые значения в (3): $|q_2|={(9.8·10^{-3}-0.67·10^{-3}·10)·3.24·10{-4}}/{9·10^{9}·1.1·10^{-9}}={3.1·10^{-3}·3.24·10^{-4}}/{9·1.1}=1.01·10^{-7}=101·10^{-9}=101$нКл.

Ответ: 101
Показать решение
Бесплатный интенсив

Задача 4

Электрон прошёл ускоряющую разность потенциалов 100 В и влетел в однородное электрическое поле напряжённостью 2·103 В/м в направлении силовых линий поля. Определите расстояние, которое электрон пролетел до остановки.

Решение

Дано:

$U=100B$

$e=1.6·10^{-19}$Кл

$E=2·10^3$В/м

$S-?$

Решение:

Если разность потенциалов $U$ ускоряющая, то работа ускоряющего электрон поля $A_1=|q|U$ ($q=e$ - заряд электрона) равна увеличению кинетической энергии электрона: $E_к-E_{к0}=A$.
Кинетическая энергия после прохождения ускоряющей разности потенциалов: $E_к={mv^2}/2$, где $m$ - масса электрона, $v$ - скорость, которую приобрёл электрон.
Так как начальная скорость равна нулю, начальная кинетическая энергия тоже равна нулю: $E_{к0}=0$.

Из (1) получим ${mv^2}/2=eU$

Когда электрон влетает в однородное электрическое поле, скорость его уменьшается до нуля, поскольку на него действует сила Кулона: $F_к=e·E$(2). Сила Кулона совершает работу: $A=-F_к·S$ (2), которая равна изменению энергии электрона $A=E_{к2}-E_к$ (3). Здесь $E_{к2}=0$ - конечная кинетическая энергия электрона (когда он остановился), $E_к={mv^2}/2$ - найденная ранее кинетическая энергия электрона после прохождения ускоряющей разности потенциалов.
Приравняв (2) и (3) получим: $-e·E·S=-{mv^2}/2$ (4).

Приравняв (1) и (4), получим: $eE·S=eU⇒S={U}/{E}$(3). Подставим числа: $S={100}/{2·1000}={1}/{20}=0.05м=5$см.

Ответ:
Показать решение
Бесплатный интенсив

Задача 5

Свинцовая пуля массой 10 г, летящая со скоростью 400 м/с, пробивает деревяный шар массой 1 кг, висящий на прочной нити, и вылетает из него со скоростью 300 м/с. Определите увеличение температуры пули после пробивания шара, если на её нагревание идёт 60% потери кинетической энергии системы «пуля–шар». Удельная теплоёмкость свинца $c=140$Дж/кг·С. Ответ выразите в кельвинах и округлите до десятых.

Решение

Дано:

$m_1=10^{-2}$кг

$υ_1=400$м/с

$m_2=1$кг

$υ_2=300$м/с

$c=140$Дж/кг·С

$Q=0.6∆E_к$

$∆T-?$

Решение:

Рассчитаем потери кинетической энергии системы "пуля-шар": $∆E_к={mυ_1^2}/{2}-{mυ_2^2}/{2}={m}/{2}·(υ_1^2-υ_2^2)={10^{-2}}/{2}(16·10^4-9·10^4)={7·10^2}/{2}=350$Дж.

Количество теплоты, которое получает пуля равно: $Q=cm·∆t$(2), где $c$ - удельная теплоемкость свинца, $c=140$Дж/кг·С.

По условию задачи: $Q=0.6·∆E_к$, откуда $∆t={0.6∆E_к}/{cm}$(3). Подставим числовые значения в (3): $∆t={0.6·350}/{10^{-2}·140}=150°C$. Поскольку $1°C=1K$, то $∆t=∆T=150K$

Ответ:
Показать решение
Бесплатный интенсив

Задача 6

Прямой проводник с током 2 А находится в однородном магнитном поле с индукцией 10 Тл. Угол между направлением тока в проводнике и линиями индукции магнитного поля равен 30◦. Определите активную длину проводника, если к нему приложена сила 2 Н. Ответ выразите в (м).

Решение

Дано:

$J=2A$

$B=10$Тл

$α=30°$

$F_A=2H$

$l-?$

Решение:

На проводнике с током в однородном магнитном поле действует сила Ампера: $F_A=J·B·l·sinα$(1), где $l$ - длина проводника. Выразим $l$ из (1): $l={F_A}/{J·B·sinα}$(2). Подставим числовые значения в (2): $l={2}/{2·10·sin30°}={1}/{10·0.5}={1}/{5}=0.2$м.

Ответ: 0.2
Показать решение
Бесплатный интенсив

Задача 7

Два моля одноатомного газа, находящегося в цилиндре при температуре T1 = 200 К и давлении 2·105 Па, расширяется и одновременно охлаждается так, что его давление (p) в этом процессе обратно пропорционально объёму в кубе (V3). Какое количество теплоты газ отдал при расширении, если при этом он совершил работу A = 939,5 Дж, а его давление стало равным 0,25 · 105 Па?

Решение

Дано:

$υ=2$моля

$T_1=200K$

$P_1=2·10^5$Па

$A=939.5$Дж

$P_2=0.25·10^5$Па

$Q-?$

Решение:

1) Уравнение Менделеев-Клайперона: $pV=υRT$

$\{\table\U_1={3}/{2}υRT_1; \U_2={3}/{2}υRT_2;$ $∆U={3}/{2}υR(T_2-T_1)$

Давление обратно пропорционально убу объёма, поэтому: ${p_1}/{p_2}=(V_2)^3/(V_1)^3$.
${p_1}/{p_2}={2·10^5}/{0.25·10^5}=8$, тогда ${V_2}/{V_1}=√^3{p_1/p_2}=2$

Из уравнений Менделеева-Клапейрона для двух состояний газов: ${p_1V_1}/{T_1}={p_2V_2}/{T_2}$. Тогда $T_2={p_2V_2}/{p_1V_1}T_1=1/4T_1=1/4·200=50K$.

$Q=A+∆U⇒939.5+{3}/{2}·2·8.31(50-200)=-2800$кДж.

Значит газ отдал 2,8 кДж теплоты.

Ответ: 2.8
Показать решение
Бесплатный интенсив

Задача 8

Два моля одноатомного газа, находящегося в цилиндре при температуре 400 К и давлении 4 · 105 Па, расширяются и одновременно охлаждаются так, что его давление в этом процессе обратно пропорционально объёму в кубе (V3). Какую работу совершил газ при расширении, если он отдал количество теплоты 1979 Дж, а его давление стало равным 0,5 · 105 Па?

Решение

1) Первое начало термодинамики $-Q=∆U+A$, $∆U={3}/{2}υRT$, по условию $p={α}/{V^3}⇒V={α}/{√^3{p}}$.

2) По закону Менделеева-Клайперона $pV=υRT$.

3) Определим конечную температуру: $T_2=T_1√^3{{p_2}/{p_1}}=400√{{0.5·10^5}/{4·10^5}}=200K$.

4) Таким образом $A=-Q-∆U=-1979-{3}/{2}·2·8.31(200-400)=5.5$кДж.

Ответ: 5.5
Показать решение
Бесплатный интенсив

Задача 9

Поток фотонов выбивает фотоэлектроны из металла с работой выхода 4 эВ. Энергия фотонов в 1,25 раза больше максимальной кинетической энергии фотоэлектронов. Какова энергия фотонов? Ответ выразите в (эВ).

Решение

Дано:

$A_{вых}=4$эВ

$hυ=E_к·1.25$

$hυ-?$

Решение:

$hυ=4эВ+{hυ}/{1.25}$ - уравнение фотоэффекта.

$0.2·hυ=4эВ$.

$hυ=20$эВ

Ответ: 20
Показать решение
Бесплатный интенсив

Задача 10

1 м3 влажного воздуха при относительной влажности B = 60%, температуре T = 293 K и нормальном атмосферном давлении имеет массу M = 1,2004 кг. Определите давление насыщающего водяного пара при температуре T .

Решение

Дано:

$B=60%$

$T=293K$

$V=1м^3$

$P_н=10^5$Па

$M=1,2004$кг

$P_{нп}-?$

Решение:

Уравнение Менделеева-Клайперона:

$\{\table\P_1·V=υ_1·RT; \P_2V=υ_2·RT;$ $⇒P_1+P_2=(υ_1+υ_2)·8.31·293$.

$P_1+P_2=P_н; υ_1+υ_2={100000}/{2434.83}=41.6$моль.

Тогда $\{\table\υ_1·0.018+υ_1·0.029=1.2004; \υ_2=41.6-υ_1;$ $⇒υ_1=0.545$моль.

$P_1={υ_1·RT}/{V}={0.545·8.31·293}/{1}=1370$Па.

Ответ: $1.37·10^3$
Показать решение
Бесплатный интенсив

Задача 11

Какой частоты свет следует направлять на поверхность вольфрама, чтобы максимальная скорость фотоэлектронов была равна 10^6 м/c? Работа выхода электрона из вольфрама 4,5 эВ. $h={6.6·10^{-34}}$. Ответ округлите до сотых. Ответ выразите в (·1015 Гц).

Решение

Дано:

$υ_{max}=10^6$м/c

$А_{вых}-?$

$v-?$

Решение:

По уравнению фотоэффекта: $hv=А_{вых}+{mυ_{max}^2}/{2}$

$v={А_{вых}+0.5·m·υ_{max}^2}/{h}={4.5·1.6·10^{-19}+0.5·9.1·10^{-31}·10^{12}}/{6.6·10^{-34}}=1.78·10^{15}$Гц.

Ответ: 1.78
Показать решение
Бесплатный интенсив

Задача 12

Чему равен импульс фотона, если соответствующая длина волны равна 600 нм? $h=6.62·10^{-34}$. Ответ выразите в (·10−27 кг·м/с) и округлите до десятых

Решение

Дано:

$λ=600·10^{-9}м$

$p↖{→}-?$

Решение:

$p↖{→}={hυ}/{c}={h}/{λ}={6.62·10^{-34}}/{600·10^{-9}}=1.1·10^{-27}$.

Ответ: 1.1
Показать решение
Бесплатный интенсив

Задача 13

Плоское зеркало движется со скоростью V = 1,5 см/с. С какой по модулю скоростью должен двигаться точечный источник света S, чтобы его отражение в плоском зеркале было неподвижным? Ответ выразите в (см/с).

Решение

Дано:

$υ=1.5м/с$

$U-?$

Решение:

Так как увеличивается расстояние от источника до зеркала "повторяется" внутри зеркала в изменении расстояния до изображения $U={1.5}*{2}={U}*{2}=3 м/с$.

Ответ: 0.75
Показать решение
Бесплатный интенсив

Задача 14

Сопротивления 400 Ом и 200 Ом включены последовательно в электрическую цепь. Какое количество теплоты выделится на втором сопротивлении, если на первом за то же время выделилось 6 кДж теплоты? Ответ выразите в (кДж).

Решение

Дано:

$R_1=400$Ом

$R_2=200$Ом

$Q_2-?$

$Q_1=6$кДж

Решение:

Соединение последовательное $I=I_1=I_2$, а $U=U_1+U_2$, $R=R_1+R_2$.

$Q_2=I^2R_2t$

$Q_1=I^2R_1t$, следовательно $I^2={Q_1}/{R_1t}$

$Q_2={Q_1R_2t}/{R_1t}={Q_1R_2}/{R_1}={6·10^3·200}/{400}=3$кДж

Ответ: 3
Показать решение
Бесплатный интенсив

Задача 15

На катушку электрического звонка намотана медная проволока длиной 14,4 м. Найдите площадь поперечного сечения проволоки, если сопротивление катушки равно 0,68 Ом. Ответ выразите в (мм2) и округлите до сотых.

Удельное сопротивление меди берите за 0.018 ${Ом·мм^2}/ м$
Решение

Дано:

$l=14.4$м

$R=0.68$Ом

$S-?$

$ρ=0.018{Ом·мм^2}/ м$

Решение:

$R=ρ{l}/{S}$ - уравнение для определения сопротивления.

$S={ρl}/{R}={0.018·14.4}/{0.68}=0.38мм^2$

Ответ: 0.38
Показать решение
Бесплатный интенсив

Задача 16

В комнате размером V = 10 × 5 × 3 м3 поддерживается температура T1 = 373 K, давление сухого воздуха равно 200кПа, а водяного пара 80кПа. Определите относительную влажность воздуха.

Решение

Дано:

$V=10·5·3м^3$

$T_1=373K$

$ϕ_{отн}$ ?

Решение:

При $T=373К$ пар Pнасыщ. = 100кПа => относительная влажность $ϕ_{отн}$ = $P/P_{н}$*100% = $80/100$ *100% = 80%

Ответ: 80
Показать решение
Бесплатный интенсив

Задача 17

Тело массой 1 кг совершает гармонические колебания по закону x = 0,5 cos(4t − π/4). Определите максимальную кинетическую энергию тела. Ответ выразите в (Дж).

Решение

Дано:

$x=0.5cos(4t-{π}/{4})$

$m=1$кг

$E_{к}max-?$

Решение:

$υ(t)=x'(t)=-2·sin(4t-{π}/{4})$.

$E_{к}max={m·υ^2}/{2}={1·4}/{2}=2$Дж. Так как скорость производная пути.

Ответ: 2
Показать решение
Бесплатный интенсив

Задача 18

Идеальный одноатомный газ расширяется сначала адиабатически, а затем изобарно так, что начальная и конечная температуры одинаковы. Работа, совершённая газом за весь процесс, равна 10 кДж. Какую работу совершил газ при адиабатическом расширении?

Решение

Решение:

Происходящие с газом в данной задаче процессы в координатах pV выглядят вот так:

Согласно первому закону термодинамики, общее количество теплоты Q, полученное газом в процессах 12 и 23, идёт на изменение внутренней энергии газа $∆U$ и совершение газом работы $A$: $Q=∆U+A$ (1)
$Q=Q_{12}+Q_{23}$. Так как процесс 12 адиабатный, $Q_{12}=0$, значит $Q=Q_{23}$
$∆U=U_3-U_1={3}/{2}vRT_{3}-{3}/{2}vRT_{1}={3}/{2}vR(T_{3}-T_1)=0$, т.к. $T_3=T_1$ по условию.

Ур-е (1) примет вид: $Q_{23}=A$ (2)
$A=A_{12}+A_{23}$ (3) - полная работа газа складывается из работ газа в каждом процессе.

Согласно первому закону термодинамики для изобарного процесса 23: $Q_{23}=A_{23}+∆U_{23}$ (4)
В изобарном процессе работа газа $A_{23}=p(V_3-V_2)$, а изменение внутренней энергии: $∆U_{23}=3/2p(V_3-V_2)=3/2A_{23}$.
Уравнение (4) примет вид: $Q_{23}=A_{23}+3/2А_{23}=5/2A_{23}$.
Тогда с учётом ур-я (2) $A_23=2/5Q_{23}=2/5A$

Подставим полученное выражение для $A_{23}$ в ур-е (3): $A=A_{12}+2/5A$ => $A_{12}=A-2/5A=3/5A=3/5·10кДж=6кДж$

Ответ: 6
Показать решение
Бесплатный интенсив

Задача 19

Чему равен потенциал, до которого может зарядиться металлическая пластина, работа выхода электронов из которой 1,6 эВ, при длительном освещении потоком фотонов с энергией 4 эВ? Ответ выразите в (В).

Решение

Дано:

$A_{вых}=1.6$эВ

$hυ=4$эВ

$U_з-?$

Решение:

По уравнению Эйнштейна определим задерживающее $U(B)$: $hυ=A_{вых}+eU_з$

$eU_з=hυ-A_{вых}=4эВ-1.6эВ=2.4$эB

$U_з=2.4$B

Ответ: 2.4
Показать решение
Бесплатный интенсив

Задача 20

Лазер излучает световые импульсы с энергией 200 мДж. Частота повторения импульсов 10 Гц. КПД лазера, определяемый отношением излучаемой энергии к потребляемой, составляет 4,0%. Какой объём воды нужно прокачать за один час через охлаждающую систему лазера, чтобы вода нагрелась не более чем на 5,0◦С?

Решение

Дано:

$E=200$мДж

$υ=10$Гц

$t=1$час

$∆t′=5°$

$η=4%$

$V_в-?$

Решение:

1) Мощность излучения $P_{изл}=W·υ$.

2) Потребляемая мощность $P_л={P_{изл}}/{η}$

3) Мощность охлаждения: $P_{охл}=P_л-P_{изл}=P_{изл}{(1-η)}/{η}$

4) $Q_{охл}=P_{охл}·t$ выразим через числовой баланс $Q_{охл}=ρ·υ·c·∆t$

5) Выразим и получим $V={W·υ·T}/{ρ·c·∆t′}·{1-η}/{η}={200·10^{-3}·10·3600}/{1000·4.2·10^3·5}·{1-0.04}/{0.04}=8.2л$

Ответ: 8.2
Показать решение
Бесплатный интенсив
Показать еще
Подпишись на полезные материалы ЕГЭ по физике: разбор реальных вариантов ЕГЭ и сложных заданий + авторские конспекты

Бесплатный интенсив по физике

3 огненных вебинара, домашние задания, беседа курса, личный кабинет, связь с преподавателем и многое другое.
Курс стартует 23 января.

Бесплатный интенсив