Задание 5. Теория вероятностей. ЕГЭ 2026 по математике (базовой)
Средний процент выполнения: 81.7%
Алгоритм решения задания 5:
Определите, какое случайное событие рассматривается в условии задачи.
Установите, какие исходы возможны в данной ситуации, и подсчитайте их общее количество.
Определите, какие из возможных исходов являются благоприятными для данного события.
Найдите отношение числа благоприятных исходов к общему числу возможных исходов.
Проанализируйте полученное значение вероятности и его соответствие условиям задачи.
Подпишись на суперполезные материалы
Задачи для практики
Задача 1
Два завода выпускают одинаковые подшипники. Первый завод выпускает $38%$ всех подшипников, второй — $62%$. При проверке оказалось, что $2%$ продукции первого завода и $2{,}5%$ второго имеют скрытые дефекты. Найдите вероятность того, что случайно купленный подшипник окажется бракованным.
Решение
Решение задачи на вероятность покупки бракованного подшипника:
Введём обозначения:
• P₂ = 62% = 0,62 - доля 2-го завода
• Брак на 1-м заводе: 2% = 0,02
• Брак на 2-м заводе: 2,5% = 0,025
Используем формулу полной вероятности:
Подставляем значения:
= 0,0076 + 0,0155
= 0,0231
Ответ: вероятность брака =
Задача 2
Спортсмен четыре раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна $0{,}74$. Найдите вероятность того, что спортсмен первые два раза попал в мишени, а последние два промахнулся. Результат округлите до сотых.
Решение
Решение задачи на вероятность последовательности попаданий и промахов:
Известные данные:
Вероятность промаха (Q) = 1 - 0,74 = 0,26
Необходимо найти вероятность последовательности:
P × P × Q × Q
Вычисляем вероятность:
Округляем до сотых:
Ответ: вероятность заданной последовательности =
Задача 3
Всем пациентам с подозрением на болезнь делают анализ крови. Если анализ выявляет болезнь, то результат анализа называется положительным. У больных анализ даёт положительный результат с вероятностью $0{,}95$. Если пациент не болен, то анализ может дать ложный положительный результат с вероятностью $0{,}02$. Известно, что $6%$ пациентов, поступающих с подозрением на заболевание, действительно больны. Найдите вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на заболевание, будет положительным.
Решение
Решение задачи на вероятность положительного результата анализа:
Введём обозначения событий:
Ā - пациент не болен
B - положительный результат анализа
Известные вероятности:
P(Ā) = 1 - 0,06 = 0,94
P(B|A) = 0,95
P(B|Ā) = 0,02
Используем формулу полной вероятности:
Подставляем значения:
Вычисляем:
0,94 × 0,02 = 0,0188
P(B) = 0,057 + 0,0188 = 0,0758
Задача 4
Предприниматель закупает для продажи на рынке куриные яйца в двух хозяйствах. $50%$ яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — $40%$ яиц высшей категории. При продаже яиц на рынке оказалось, что всего получилось $42%$ яиц высшей категории. Найдите вероятность того, что яйцо, купленное у предпринимателя, окажется из второго хозяйства.
Решение
Решение задачи на определение вероятности происхождения яиц:
Введём обозначения:
• Вероятность высшей категории:
- из 1-го хозяйства: 50% = 0,5
- из 2-го хозяйства: 40% = 0,4
• Общая доля высшей категории: 42% = 0,42
Составим уравнение:
Решим уравнение:
0,1x + 0,4 = 0,42
0,1x = 0,02
x = 0,2
Найдём долю второго хозяйства:
Ответ: вероятность того, что яйцо из второго хозяйства =
Задача 5
Робин Гуд подошел к столу, на котором лежали 3 его старых лука и 2 новых. Он решил сбить стрелой яблоко с дерева. Робин попадает в цель из своего старого лука с вероятностью $0{,}8$, а из нового — с вероятностью $0{,}3$. Робин случайным образом выбирает один лук. Найдите вероятность того, что Робин промахнётся при стрельбе.
Решение
Решение задачи на вероятность промаха Робина Гуда:
Определим вероятности выбора луков:
• Вероятность выбрать старый лук: 3/5 = 0,6
• Вероятность выбрать новый лук: 2/5 = 0,4
Вероятности промаха для каждого типа луков:
• Для нового лука: 1 - 0,3 = 0,7
Используем формулу полной вероятности:
Подставляем значения:
= 0,12 + 0,28
= 0,40
Ответ: вероятность промаха =
Задача 6
Перед началом соревнований по теннису участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 32 теннисиста, среди которых 8 участников из России, в том числе Дарья Иванова. Найдите вероятность того, что Дарья Иванова будет играть с какой-либо теннисисткой из России. Результат округлите до сотых.
Решение
Решение задачи на вероятность игры с российской теннисисткой:
Общее количество возможных соперников для Дарьи Ивановой:
После выбора Дарьи остаётся: 32 - 1 = 31 возможный соперник
Количество российских теннисисток, кроме Дарьи:
Кроме Дарьи: 8 - 1 = 7
Вычисляем вероятность:
Округляем до сотых:
Ответ: вероятность игры с российской теннисисткой ≈
Задача 7
В соревнованиях участвуют 6 спортсменов из Франции, 3 спортсмена из Чехии, 7 спортсменов из Германии и 4 — из Бельгии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, выступающий шестым, окажется из Германии.
Решение
Решение задачи на вероятность выступления спортсмена из Германии шестым:
Определяем общее количество спортсменов:
Чехия: 3
Германия: 7
Бельгия: 4
Всего: 6 + 3 + 7 + 4 = 20 спортсменов
Вероятность для 6-го выступающего:
Вычисление:
Ответ: вероятность =
Задача 8
Света, Марина, Оля и Ксюша бросили жребий — кому начинать игру. Найдите вероятность того, что начинать игру должна будет Света.
Решение
Жребий имеет $4$ равновозможных исхода (все девочки имеют равные шансы начинать игру). Значит, вероятность события «Игру будет начинать Света» равна ${1} / {4}=0{,}25$.
Задача 9
В среднем из $400$ приборов, поступивших в продажу, $5$ с браком. Найдите вероятность того, что один случайно выбранный для контроля прибор окажется бракованным.
Решение
Решение задачи на вероятность обнаружения бракованного прибора:
Известные данные:
• Бракованных приборов: 5
Формула классической вероятности:
Вычисляем вероятность:
Ответ: вероятность обнаружения брака =
Задача 10
Вероятность того, что новый электрический прибор прослужит больше года, равна $0{,}923$. Вероятность того, что он прослужит больше двух лет, равна $0{,}87$. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.
Решение
Решение задачи на вероятность работы прибора:
Введём обозначения событий:
B - прибор прослужит > 2 лет (P(B) = 0,87)
Искомая вероятность (прослужит от 1 до 2 лет):
Вычисляем:
Ответ: вероятность работы от 1 до 2 лет =
Задача 11
В ларьке на улице Счастья стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью $0{,}1$ независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.
Решение
Найдём вероятность события «оба автомата неисправны», а затем искомую вероятность.
Вероятность события «неисправен первый автомат» равна вероятности события «неcисправен второй автомат» и равна 0,1. Эти два события независимы, значит, вероятность того, что они наступят оба, равна произведению их вероятностей, то есть равна 0.1 · 0.1 = 0.01. Таким образом, мы нашли вероятность события «оба автомата неисправны».
События «оба автомата неисправны» и «хотя бы один автомат исправен» противоположны, следовательно, сумма их вероятностей равна 1. Значит, вероятность события «хотя бы один автомат исправен» равна 1 - 0.01 = 0.99.
Задача 12
В торговом центре два одинаковых автомата продают сладкую вату. Вероятность того, что к концу дня в автомате закончится сладкая вата, равна $0{,}6$. Вероятность того, что сладкая вата закончится в обоих автоматах, равна $0{,}45$. Найдите вероятность того, что к концу дня сладкая вата останется в обоих автоматах.
Решение
По условию вероятность события A =«сладкая вата закончится в первом автомате» равна вероятности события B =«сладкая вата закончится во втором автомате» и равна $0.6$. При этом $0.6 · 0.6 ≠ 0.45$, поэтому указанные выше события — зависимы (вероятность пересечения событий не равна произведению вероятностей этих событий).
В этом случае воспользуемся формулой $P (A ∪ B) = P (A) + P (B) - P (A ∩ B)$.
$P (A ∪ B) = 0.6 + 0.6 - 0.45 = 0.75$. Событие $A ∪ B$ — это событие «сладкая вата закончилась хотя бы в одном автомате». Указанное событие противоположно искомому. Отсюда вероятность события «сладкая вата останется в обоих автоматах» равна $1 - 0.75 = 0.25$.
Задача 13
Вероятность того, что новый электрический чайник прослужит больше года, равна $0{,}93$. Вероятность того, что он прослужит больше двух лет, равна $0{,}84$. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.
Решение
Заметим, что из событий "чайник прослужит меньше года", "чайник прослужит от 1 до 2 лет" и "чайник прослужит больше двух лет" произойдёт обязательно ровно одно, то есть, говоря математическим языком, они попарно несовместны, а их объединение - достоверное событие. Следовательно, сумма вероятностей этих событий равна 1.
При этом события "чайник прослужит меньше года" и "чайник прослужит больше года" противоположны, поэтому вероятность события "чайник прослужит меньше года" равна 1 - 0.93 = 0.07. Заполним таблицу.
| Событие | Прослужит меньше года | Прослужит от 1 до 2 лет | Прослужит больше двух лет |
| Вероятность | 0.07 | ? | 0.84 |
Отсюда искомая вероятность равна 1 - 0.07 - 0.84 = 0.09.
Задача 14
В группе туристов $10$ человек. С помощью жребия они выбирают двух человек, которые останутся дежурить в лагере. Турист М хотел бы остаться в лагере, но он подчиняется жребию. Какова вероятность того, что М останется дежурить?
Решение
Решение задачи на вероятность выбора туриста М:
Общее количество способов выбрать 2 дежурных из 10 человек:
Количество благоприятных исходов (когда М выбран):
C(9,1) = 9
Вычисляем вероятность:
Ответ: вероятность того, что М останется дежурить =
Задача 15
В чемпионате по спортивной гимнастике участвуют $40$ спортсменов: $16$ — из России, $9$ — из Франции, остальные — из Беларуси. Порядок, в котором выступают гимнасты, определяется жребием. Найдите вероятность того, что спортсмен, выступающий первым, окажется из Беларуси.
Решение
Из Беларуси $40-16-9 = 15$ спортсменов. Будем считать, что случайный эксперимент заключается в том, что выбирается спортсмен, который будет выступать первым. Всего существует $40$ равновозможных исходов ($40$ спортсменов, все имеют равные шансы выступить первыми). Событию Первым будет выступать спортсмен из Беларуси благоприятствуют $15$ исходов. По определению искомая вероятность равна ${15}/{40} = {3}/{8} = 0.375$.
Задача 16
На железнодорожном вокзале $3$ кассира. Каждый из них занят с клиентом с вероятностью $0{,}2$ независимо от других кассиров. Найдите вероятность того, что в случайный момент времени все три кассира заняты одновременно.
Решение
События «первый кассир занят», «второй кассир занят» и «третий кассир занят» по условию независимы. Тогда вероятность их одновременного наступления (вероятность пересечения событий) равна произведению вероятностей этих событий, то есть равна 0.2 · 0.2 · 0.2 = 0.008.
Задача 17
Охотник Генри попадает в муху на стене с вероятностью $0{,}6$, если стреляет из пристрелянного ружья. Если Генри стреляет из непристрелянного ружья, то он попадает в муху с вероятностью $0{,}4$. На столе лежит $12$ ружей, из них $9$ пристрелянные. Охотник Генри видит на стене муху, наудачу хватает первое попавшееся ружьё и стреляет в муху. Найдите вероятность того, что Генри промахнётся.
Решение
Вероятность того, что Генри возьмёт пристрелянное ружьё, равна ${9}/{12} = 0.75$. Вероятность того, что Генри возьмёт непристрелянное ружьё, равна $1 - 0.75 = 0.25$. Вероятность промахнуться из пристрелянного ружья равна $1 - 0.6 = 0.4$, вероятность промахнуться из непристрелянного ружья равна $1 - 0.4 = 0.6$.
Вероятность события A = «Генри взял пристрелянное ружьё и промахнулся» равна $0.75 · 0.4 = 0.3$.
Вероятность события B = «Генри взял непристрелянное ружьё и промахнулся» равна $0.25 · 0.6 = 0.15$.
События A и B несовместны. Действительно, Генри не может одновременно «взять пристелянное ружьё и промахнуться», а также «взять непристелянное ружьё и промахнуться» — ведь Генри берёт только одно ружьё!
Тогда $P (A ∪ B) = P (A) + P (B) = 0.3 + 0.15 = 0.45$. Но $A ∪ B$ — это и есть событие «Генри взял ружьё и промахнулся».
Задача 18
На конференцию приехали $7$ учёных из Китая, $5$ — из России и $8$ — из Египта. Каждый из них делает на конференции один доклад. Порядок докладов определяется жеребьёвкой. Найдите вероятность того, что восьмым окажется доклад учёного из России.
Решение
Будем считать, что случайный эксперимент заключается в том, что выбирается учёный, который будет выступать восьмым. Всего существует $20$ равновозможных исходов ($7+5+8=20$ учёных, все имеют равные шансы выступить восьмыми). Событию "Восьмым будет выступать учёный из России" благоприятствуют $5$ исходов. По определению искомая вероятность равна ${5}/{20} = {1}/{4} = 0.25$.
Задача 19
За круглый стол на $51$ стул в случайном порядке рассаживаются $49$ мальчиков и $2$ девочки. Найдите вероятность того, что обе девочки будут сидеть рядом.
Решение
Предположим, что одна девочка уже сидит за столом. Тогда остаётся 50 свободных мест, из которых 2 — рядом с сидящей девочкой (слева и справа). Случайный эксперимент заключается в выборе места для второй девочки. Всего существует 50 равновозможных исходов (по числу свободных мест), из которых 2 благоприятствуют событию «девочки сидят рядом». По определению искомая вероятность равна ${2}/{50} = 0.04$.
Задача 20
Вероятность того, что новый телевизор в течение года поступит в гарантийный ремонт, равна $0{,}037$. В городе К из 100 проданных телевизоров в течение года в гарантийную мастерскую поступили 4. На сколько отличается частота события «гарантийный ремонт» от его вероятности в этом городе?
Решение
Решение задачи на сравнение вероятности и частоты события:
Известные данные:
• Количество проданных телевизоров = 100
• Количество телевизоров на ремонте = 4
Вычисляем частоту события в городе К:
Находим разницу между частотой и вероятностью:
Ответ: разница составляет
Рекомендуемые курсы подготовки
- 👻 Вспомнишь алгебраические преобразования
- 👻 Отработаешь линейные, квадратные и дробно-рациональные уравнения
- 👻 Покоришь движение по воде
- 👻 И в целом крайне продуктивно проведешь время
на бесплатном курсе Турбо ЕГЭ