Задание 5. Теория вероятностей. ЕГЭ 2026 по математике (базовой)
Подпишись на суперполезные материалы
Задачи для практики
Задача 1
Если шахматист А. играет белыми фигурами, то он выигрывает у шахматиста Б. с вероятностью $0{,}72$. Если А. играет чёрными, то А. выигрывает у Б. с вероятностью $0{,}6$. Шахматисты А. и Б. играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.
Решение
По условию вероятность события «шахматист А. выиграет белыми» равна $0{,}72$, вероятность события «шахматист А. выиграет чёрными» равна $0{,}6$. Эти события независимы. Значит, вероятность того, что оба этих события наступят (А. выиграет оба раза) равна произведению вероятностей, то есть равна $0{,}72⋅ 0{,}6=0{,}432$.
Задача 2
Вероятность того, что новая электрическая кофемашина прослужит больше года, равна $0{,}92$. Вероятность того, что она прослужит больше двух лет, равна $0{,}85$. Найдите вероятность того, что она прослужит меньше двух лет, но больше года.
Решение
Заметим, что из событий "кофемашина прослужит меньше года", "кофемашина прослужит от 1 до 2 лет" и "кофемашина прослужит больше двух лет" произойдёт обязательно ровно одно, то есть, говоря математическим языком, они попарно несовместны, а их объединение - достоверное событие. Следовательно, сумма вероятностей этих событий равна 1.
При этом события "кофемашина прослужит меньше года" и "кофемашина прослужит больше года" противоположны, поэтому вероятность события "кофемашина прослужит меньше года" равна 1 - 0.92 = 0.08. Заполним таблицу.
| Событие | Прослужит меньше года | Прослужит от 1 до 2 лет | Прослужит больше двух лет |
| Вероятность | 0.08 | ? | 0.85 |
Отсюда искомая вероятность равна 1 - 0.08 - 0.85 = 0.07.
Задача 3
За круглый стол на $51$ стул в случайном порядке рассаживаются $49$ мальчиков и $2$ девочки. Найдите вероятность того, что обе девочки будут сидеть рядом.
Решение
Предположим, что одна девочка уже сидит за столом. Тогда остаётся 50 свободных мест, из которых 2 — рядом с сидящей девочкой (слева и справа). Случайный эксперимент заключается в выборе места для второй девочки. Всего существует 50 равновозможных исходов (по числу свободных мест), из которых 2 благоприятствуют событию «девочки сидят рядом». По определению искомая вероятность равна ${2}/{50} = 0.04$.
Задача 4
Две фабрики выпускают одинаковые стёкла для автомобильных фар. Первая фабрика выпускает $35%$ этих стёкол, вторая — $65%$. Первая фабрика выпускает $8%$ бракованных стёкол, а вторая — $3%$. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
Решение
Предположим, всего выпущено $n$ стёкол. Тогда первая фабрика выпустила $0{,}35n$ стёкол, а вторая — $0{,}65n$ стёкол. Отсюда получим, что первая фабрика выпустила $0{,}35n⋅0{,}08=0{,}028n$ бракованных стёкол. Вторая фабрика выпустила $0{,}65n⋅0{,}03=0{,}0195n$ бракованных стёкол. Тогда всего бракованных стёкол $0{,}028n+0{,}0195n=0{,}0475n$. По определению вероятность того, что купленное стекло бракованное, равно ${0{,}0475n} / {n}=0{,}0475$.
Задача 5
Перед началом первого тура чемпионата по спортивным нардам участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует $56$ игроков, среди которых $12$ спортсменов из России, в том числе Евгений Победкин. Найдите вероятность того, что в первом туре Евгений Победкин будет играть с каким-либо игроком из России.
Решение
Будем считать случайным экспериментом выбор соперника Евгения Победкина. Этот эксперимент имеет $56-1 = 55$ равновозможных исходов (сам с собой он играть не может!). При этом $12 - 1 = 11$ исходов благо приятствуют событию «Евгений Победкин будет играть со спортсменом из России» (так как есть $11$ спортсменов из России, не считая самого Евгения Победкина). По определению искомая вероятность равна ${11}/{55} = 0.2$.
Задача 6
Перед началом первого тура чемпионата по настольному теннису участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует $76$ спортсменов, среди которых $46$ спортсменов из России, в том числе Григорий Соколенко. Найдите вероятность того, что в первом туре Григорий Соколенко будет играть с каким-либо теннисистом из России.
Решение
Будем считать случайным экспериментом выбор соперника Григория Соколенко. Этот эксперимент имеет $76-1=75$ равновозможных исходов (сам с собой он играть не может!). При этом $46-1=45$ исходов благоприятствуют событию «Григорий Соколенко будет играть со спортсменом из России» (так как есть $45$ спортсменов из России, не считая самого Григория Соколенко). По определению, искомая вероятность равна ${45} / {75}=0{,}6$.
Задача 7
Ковбой Майкл попадает в муху на потолке с вероятностью $0{,}8$, если стреляет из пристрелянного револьвера. Если Майкл стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью $0{,}1$. На столе лежит $20$ револьверов, из них только $6$ пристрелянные. Ковбой Майкл видит на потолке муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Майкл промахнётся.
Решение
Вероятность того, что Майкл возьмёт пристрелянный револьвер, равна ${6} / {20}=0{,}3$. Вероятность того, что Майкл возьмёт непристрелянный револьвер, равна $1-0{,}3=0{,}7$. Вероятность события $A= $ «Майкл взял пристрелянный револьвер и попал в муху» равна $0{,}3⋅ 0{,}8=0{,}24$. Вероятность события $B=$ «Майкл взял непристрелянный револьвер и попал в муху» равна $0{,}7⋅ 0{,}1=0{,}07$. События $A$ и $B$ несовместны. Действительно, Майкл не может одновременно «взять пристелянный револьвер и попасть в муху», а также «взять непристелянный револьвер и попасть в муху» — ведь Майкл берёт только один револьвер! Тогда $P(A∪ B)=P(A)+P(B)=0{,}24+0{,}07=0{,}31$. Но $A∪ B$ — это событие «Майкл попал в муху». В условии задачи спрашивается вероятность противоположного события, она равна $1-0{,}31=0{,}69$.
Задача 8
Предприниматель закупает для продажи на рынке куриные яйца в двух хозяйствах. $50%$ яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — $40%$ яиц высшей категории. При продаже яиц на рынке оказалось, что всего получилось $42%$ яиц высшей категории. Найдите вероятность того, что яйцо, купленное у предпринимателя, окажется из второго хозяйства.
Решение
Решение задачи на определение вероятности происхождения яиц:
Введём обозначения:
• Вероятность высшей категории:
- из 1-го хозяйства: 50% = 0,5
- из 2-го хозяйства: 40% = 0,4
• Общая доля высшей категории: 42% = 0,42
Составим уравнение:
Решим уравнение:
0,1x + 0,4 = 0,42
0,1x = 0,02
x = 0,2
Найдём долю второго хозяйства:
Ответ: вероятность того, что яйцо из второго хозяйства =
Задача 9
Робин Гуд подошел к столу, на котором лежали 3 его старых лука и 2 новых. Он решил сбить стрелой яблоко с дерева. Робин попадает в цель из своего старого лука с вероятностью $0{,}8$, а из нового — с вероятностью $0{,}3$. Робин случайным образом выбирает один лук. Найдите вероятность того, что Робин промахнётся при стрельбе.
Решение
Решение задачи на вероятность промаха Робина Гуда:
Определим вероятности выбора луков:
• Вероятность выбрать старый лук: 3/5 = 0,6
• Вероятность выбрать новый лук: 2/5 = 0,4
Вероятности промаха для каждого типа луков:
• Для нового лука: 1 - 0,3 = 0,7
Используем формулу полной вероятности:
Подставляем значения:
= 0,12 + 0,28
= 0,40
Ответ: вероятность промаха =
Задача 10
В группе туристов $10$ человек. С помощью жребия они выбирают двух человек, которые останутся дежурить в лагере. Турист М хотел бы остаться в лагере, но он подчиняется жребию. Какова вероятность того, что М останется дежурить?
Решение
Решение задачи на вероятность выбора туриста М:
Общее количество способов выбрать 2 дежурных из 10 человек:
Количество благоприятных исходов (когда М выбран):
C(9,1) = 9
Вычисляем вероятность:
Ответ: вероятность того, что М останется дежурить =
Задача 11
Перед началом соревнований по теннису участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 32 теннисиста, среди которых 8 участников из России, в том числе Дарья Иванова. Найдите вероятность того, что Дарья Иванова будет играть с какой-либо теннисисткой из России. Результат округлите до сотых.
Решение
Решение задачи на вероятность игры с российской теннисисткой:
Общее количество возможных соперников для Дарьи Ивановой:
После выбора Дарьи остаётся: 32 - 1 = 31 возможный соперник
Количество российских теннисисток, кроме Дарьи:
Кроме Дарьи: 8 - 1 = 7
Вычисляем вероятность:
Округляем до сотых:
Ответ: вероятность игры с российской теннисисткой ≈
Задача 12
Вероятность того, что новый электрический прибор прослужит больше года, равна $0{,}923$. Вероятность того, что он прослужит больше двух лет, равна $0{,}87$. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.
Решение
Решение задачи на вероятность работы прибора:
Введём обозначения событий:
B - прибор прослужит > 2 лет (P(B) = 0,87)
Искомая вероятность (прослужит от 1 до 2 лет):
Вычисляем:
Ответ: вероятность работы от 1 до 2 лет =
Задача 13
Спортсмен четыре раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна $0{,}74$. Найдите вероятность того, что спортсмен первые два раза попал в мишени, а последние два промахнулся. Результат округлите до сотых.
Решение
Решение задачи на вероятность последовательности попаданий и промахов:
Известные данные:
Вероятность промаха (Q) = 1 - 0,74 = 0,26
Необходимо найти вероятность последовательности:
P × P × Q × Q
Вычисляем вероятность:
Округляем до сотых:
Ответ: вероятность заданной последовательности =
Задача 14
Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали ходить. Найдите вероятность того, что часовая стрелка застыла, достигнув отметки 9, но не дойдя до отметки 2. Результат округлите до сотых.
Решение
Решение задачи на вероятность положения часовой стрелки:
Определяем благоприятный интервал:
Это 5 часовых делений (9→10→11→12→1→2)
Всего возможных положений часовой стрелки:
Вычисляем вероятность:
Округляем до сотых:
Ответ: вероятность ≈
Задача 15
Конференция проводится в 4 дня. Запланировано 80 докладов — первые два дня по 23 доклада, остальные распределены поровну между третьим и четвёртым днями. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора А окажется запланированным на третий день конференции?
Решение
Решение задачи на вероятность распределения доклада:
Распределение докладов по дням:
• 2-й день: 23 доклада
• 3-й и 4-й дни: (80 - 23 - 23) = 34 доклада → по 17 докладов в день
Вероятность для доклада профессора А:
Вычисление:
Ответ: вероятность =
Задача 16
В соревнованиях участвуют 6 спортсменов из Франции, 3 спортсмена из Чехии, 7 спортсменов из Германии и 4 — из Бельгии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, выступающий шестым, окажется из Германии.
Решение
Решение задачи на вероятность выступления спортсмена из Германии шестым:
Определяем общее количество спортсменов:
Чехия: 3
Германия: 7
Бельгия: 4
Всего: 6 + 3 + 7 + 4 = 20 спортсменов
Вероятность для 6-го выступающего:
Вычисление:
Ответ: вероятность =
Задача 17
Биатлонист Алексей Антонов пять раз стреляет по мишеням. Вероятность попадания при одном выстреле равна $0{,}7$. Найдите вероятность того, что биатлонист Алексей Антонов один раз попал по мишени, а четыре — промахнулся. Результат округлите до сотых.
Решение
Вероятность промахнуться при одном выстреле равна $1 - 0.7 = 0.3$. Обозначим события.
1. $A_1$ — «Алексей попал по мишени при первом выстреле».
2. $A_2$ — «Алексей попал по мишени при втором выстреле».
3. $A_3$ — «Алексей попал по мишени при третьем выстреле».
4. $A_4$ — «Алексей попал по мишени при четвёртом выстреле».
5. $A_5$ — «Алексей попал по мишени при пятом выстреле».
События ${A_1}↖{-}, {A_2}↖{-}, {A_3}↖{-}, {A_4}↖{-}$ и ${A_5}↖{-}$ — означают, что Алексей промахнулся при соответствующем выстреле.
Событие «Алексей Антонов первый раз попал по мишени, а последние четыре промахнулся» означает одновременное наступление (пересечение) независимых событий ${A_1}, {A_2}↖{-}, {A_3}↖{-}, {A_4}↖{-}$ и ${A_5}↖{-}$.
$P (A_1 ∩ {A_2}↖{-} ∩ {A_3}↖{-} ∩ {A_4}↖{-} ∩ {A_5}↖{-}) = P (A_1) · P ({A_2}↖{-}) · P ({A_3}↖{-}) · P ({A_4}↖{-}) · P ({A_5}↖{-}) = 0.7 · 0.3 · 0.3 · 0.3 · 0.3 = 0.00567$.
По условию Алексей мог промахнуться единожды, но этот промах мог прийтись на любой из пяти выстрелов, не обязательно на первый.
Тогда, аналогично, $P ({A_1}↖{-} ∩ A_2 ∩ {A_3}↖{-} ∩ {A_4}↖{-} ∩ {A_5}↖{-}) = P ({A_1}↖{-}∩ {A_2}↖{-} ∩ A_3 ∩ {A_4}↖{-} ∩ {A_5}↖{-}) =$
$= P ({A_1}↖{-} ∩ {A_2}↖{-} ∩ {A_3}↖{-} ∩ A_4 ∩ {A_5}↖{-}) = P ({A_1}↖{-} ∩ {A_2}↖{-} ∩ {A_3}↖{-} ∩ {A_4}↖{-} ∩ A_5) =$
$= P (A_1 ∩ {A_2}↖{-} ∩ {A_3}↖{-} ∩ {A_4}↖{-} ∩ {A_5}↖{-}) = (0.3)^4 · 0.7 = 0.00567$.
Следовательно, искомая вероятность равна $0.00567 · 5 = 0.02835 ≈0.03$.
Задача 18
Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы $4$ очка в двух играх. Если команда выигрывает, она получает $3$ очка, в случае ничьей — $1$ очко, если проигрывает — $0$ очков. Найдите вероятность того, что команде «Ветерок» удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны $0{,}3$.
Решение
Вероятность ничьей в каждой игре равна 1 - 0.3 - 0.3 = 0.4 (из единицы вычитаем вероятность выигрыша и вероятность проигрыша). «Ветерок» выйдет в следующий круг в одном из трёх следующих случаев.
1. «Ветерок» выиграет обе игры. Вероятность этого равна 0.3 · 0.3 = 0.09.
2. «Ветерок» выиграет первую игру и сыграет вничью вторую. Вероятность этого равна 0.3 · 0.4 = 0.12.
3. «Ветерок» сыграет вничью первую игру и выиграет вторую. Вероятность этого равна 0.4 · 0.3 = 0.12.
Искомая вероятность равна 0.09 + 0.12 + 0.12 = 0.33.
Задача 19
Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы $4$ очка в двух играх. Если команда выигрывает, она получает $3$ очка, в случае ничьей — $1$ очко, если проигрывает — $0$ очков. Найдите вероятность того, что команде «Лесник» удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны $0{,}2$.
Решение
Вероятность ничьей в каждой игре равна $1-0{,}2-0{,}2=0{,}6$ (из единицы вычитаем вероятность выигрыша и вероятность проигрыша). «Лесник» выйдет в следующий круг в одном из трёх следующих случаев. 1. «Лесник» выиграет обе игры. Вероятность этого равна $0{,}2⋅ 0{,}2=0{,}04$. 2. «Лесник» выиграет первую игру и сыграет вничью вторую. Вероятность этого равна $0{,}2⋅ 0{,}6=0{,}12$. 3. «Лесник» сыграет вничью первую игру и выиграет вторую. Вероятность этого равна $0{,}6⋅ 0{,}2=0{,}12$. Искомая вероятность равна $0{,}04+0{,}12+0{,}12=0{,}28$.
Задача 20
В некотором городе из $5000$ появившихся на свет младенцев $2075$ мальчиков. Найдите частоту рождения девочек в этом городе. Результат округлите до сотых.
Решение
Из каждых $5000$ появившихся на свет младенцев девочек $5000 - 2075 = 2925$. По определению искомая частота равна ${2925}/{5000} = 0.585 ≈ 0.59$.
Рекомендуемые курсы подготовки
- Повторишь теорию по линейной и квадратичной функции
- Научишься быстро анализировать графики функций
- Узнаешь секреты производной в базовом ЕГЭ
- Сразу на вебинаре решишь все типы 7 задания
- Научишься применять теорию на практике и с легкостью будешь расправляться с №7 в ЕГЭ
на бесплатном курсе Турбо ЕГЭ