Задание 5. Теория вероятностей. ЕГЭ 2026 по математике (базовой)
Средний процент выполнения: 81.7%
Алгоритм решения задания 5:
Определите, какое случайное событие рассматривается в условии задачи.
Установите, какие исходы возможны в данной ситуации, и подсчитайте их общее количество.
Определите, какие из возможных исходов являются благоприятными для данного события.
Найдите отношение числа благоприятных исходов к общему числу возможных исходов.
Проанализируйте полученное значение вероятности и его соответствие условиям задачи.
Подпишись на суперполезные материалы
Задачи для практики
Задача 1
В чемпионате мира участвуют $16$ команд. С помощью жребия их нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп: $1$, $1$, $1$, $1$, $2$, $2$, $2$, $2$, $3$, $3$, $3$, $3$, $4$, $4$, $4$, $4$. Капитаны команд тянут по одной карточке. Какова вероятность того, что команда «Плутон», участвующая в чемпионате, окажется во второй группе?
Решение
Будем считать, что случайный эксперимент заключается в том, что капитан команды «Плутон» тянет карточку с номером группы. У этого эксперимента $16$ равновозможных исходов (по числу карточек). Событию «Команда „ Плутон“ окажется во второй группе» благоприятствуют $4$ исхода (количество карточек с номером $2$). По определению вероятности искомая вероятность равна ${4} / {16}=0{,}25$.
Задача 2
Предприниматель закупает для продажи на рынке куриные яйца в двух хозяйствах. $50%$ яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — $40%$ яиц высшей категории. При продаже яиц на рынке оказалось, что всего получилось $42%$ яиц высшей категории. Найдите вероятность того, что яйцо, купленное у предпринимателя, окажется из второго хозяйства.
Решение
Решение задачи на определение вероятности происхождения яиц:
Введём обозначения:
• Вероятность высшей категории:
- из 1-го хозяйства: 50% = 0,5
- из 2-го хозяйства: 40% = 0,4
• Общая доля высшей категории: 42% = 0,42
Составим уравнение:
Решим уравнение:
0,1x + 0,4 = 0,42
0,1x = 0,02
x = 0,2
Найдём долю второго хозяйства:
Ответ: вероятность того, что яйцо из второго хозяйства =
Задача 3
Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы $4$ очка в двух играх. Если команда выигрывает, она получает $3$ очка, в случае ничьей — $1$ очко, если проигрывает — $0$ очков. Найдите вероятность того, что команде «Ветерок» удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны $0{,}3$.
Решение
Вероятность ничьей в каждой игре равна 1 - 0.3 - 0.3 = 0.4 (из единицы вычитаем вероятность выигрыша и вероятность проигрыша). «Ветерок» выйдет в следующий круг в одном из трёх следующих случаев.
1. «Ветерок» выиграет обе игры. Вероятность этого равна 0.3 · 0.3 = 0.09.
2. «Ветерок» выиграет первую игру и сыграет вничью вторую. Вероятность этого равна 0.3 · 0.4 = 0.12.
3. «Ветерок» сыграет вничью первую игру и выиграет вторую. Вероятность этого равна 0.4 · 0.3 = 0.12.
Искомая вероятность равна 0.09 + 0.12 + 0.12 = 0.33.
Задача 4
В чемпионате мира участвуют $20$ команд. С помощью жребия их нужно разделить на пять групп по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп: $1$, $1$, $1$, $1$, $2$, $2$, $2$, $2$, $3$, $3$, $3$, $3$, $4$, $4$, $4$, $4$, $5$, $5$, $5$, $5$. Капитаны команд тянут по одной карточке. Какова вероятность того, что команда «Искра», участвующая в чемпионате, окажется в третьей группе?
Решение
Будем считать, что случайный эксперимент заключается в том, что капитан команды Искра тянет карточку с номером группы. У этого эксперимента 20 равновозможных исходов (по числу карточек). Событию Команда Искра окажется в третьей группе благоприятствуют 4 исхода (количество карточек с номером 3). По определению вероятности искомая вероятность равна ${4}/{20} = 0.2$.
Задача 5
В Волшебной стране бывает два типа погоды: ветреная и тихая, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью $0{,}9$ погода завтра будет такой же, как и сегодня. Сегодня, $11$ апреля, погода в Волшебной стране ветреная. Найдите вероятность того, что $14$ апреля в Волшебной стране будет ветреная погода.
Решение
Будем считать, что если погода меняется, то меняется она ровно в полночь. Погода завтра будет не такой как сегодня с вероятностью 1 - 0.9 = 0.1. По условию 11 апреля погода ветренная и 14 апреля должно быть ветрено. При этих условиях составим таблицу всевозможных вариантов погоды на 12 и 13 апреля.
| 11 апреля | 12 апреля | 13 апреля | 14 апреля |
| ветрено | тихо | тихо | ветрено |
| ветрено | тихо | ветрено | ветрено |
| ветрено | ветрено | тихо | ветрено |
| ветрено | ветрено | ветрено | ветрено |
Строки этой таблицы соответствуют несовместным событиям, так как, например, события «12 и 13 апреля погода тихая» и «12 апреля погода тихая, 13 — ветреная» не могут наступить одновременно.
Если погода в полночь не изменилась, то между соответствующими значениями погоды в дополнительную колонку впишем знак «=», а если изменилась, то знак «≠». Каждому знаку «=» соответствует вероятность 0.1, а каждому знаку «≠» соответствует вероятность 0.3. Для всех вариантов погоды на 12 и 13 апреля посчитаем вероятность того, что 14 апреля будет ветрено.
| 11 апр. | 12 апр. | 13 апр. | 14 апр. | Вероятность | |||
| ветрено | ≠ | тихо | = | тихо | ≠ | ветрено | 0,1 · 0,9 · 0,1 = 0,009 |
| ветрено | ≠ | тихо | ≠ | ветрено | = | ветрено | 0,1 · 0,1 · 0,9 = 0,009 |
| ветрено | = | ветрено | ≠ | тихо | ≠ | ветрено | 0.9 · 0.1 · 0.1 = 0.009 |
| ветрено | = | ветрено | = | ветрено | = | ветрено | 0.9 · 0.9 · 0.9 = 0.729 |
| Найдём сумму вероятностей в последней колонке, это и есть искомая вероятность. | 0.009+0.009+0.009+0.729 = 3 · 0.009 + 0.729 = 0.756 | ||||||
Искомая вероятность равна 0.756.
Задача 6
Всем пациентам с подозрением на болезнь делают анализ крови. Если анализ выявляет болезнь, то результат анализа называется положительным. У больных анализ даёт положительный результат с вероятностью $0{,}95$. Если пациент не болен, то анализ может дать ложный положительный результат с вероятностью $0{,}02$. Известно, что $6%$ пациентов, поступающих с подозрением на заболевание, действительно больны. Найдите вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на заболевание, будет положительным.
Решение
Решение задачи на вероятность положительного результата анализа:
Введём обозначения событий:
Ā - пациент не болен
B - положительный результат анализа
Известные вероятности:
P(Ā) = 1 - 0,06 = 0,94
P(B|A) = 0,95
P(B|Ā) = 0,02
Используем формулу полной вероятности:
Подставляем значения:
Вычисляем:
0,94 × 0,02 = 0,0188
P(B) = 0,057 + 0,0188 = 0,0758
Задача 7
Перед началом соревнований по теннису участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 32 теннисиста, среди которых 8 участников из России, в том числе Дарья Иванова. Найдите вероятность того, что Дарья Иванова будет играть с какой-либо теннисисткой из России. Результат округлите до сотых.
Решение
Решение задачи на вероятность игры с российской теннисисткой:
Общее количество возможных соперников для Дарьи Ивановой:
После выбора Дарьи остаётся: 32 - 1 = 31 возможный соперник
Количество российских теннисисток, кроме Дарьи:
Кроме Дарьи: 8 - 1 = 7
Вычисляем вероятность:
Округляем до сотых:
Ответ: вероятность игры с российской теннисисткой ≈
Задача 8
В соревнованиях участвуют 6 спортсменов из Франции, 3 спортсмена из Чехии, 7 спортсменов из Германии и 4 — из Бельгии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, выступающий шестым, окажется из Германии.
Решение
Решение задачи на вероятность выступления спортсмена из Германии шестым:
Определяем общее количество спортсменов:
Чехия: 3
Германия: 7
Бельгия: 4
Всего: 6 + 3 + 7 + 4 = 20 спортсменов
Вероятность для 6-го выступающего:
Вычисление:
Ответ: вероятность =
Задача 9
Вероятность того, что новый электрический чайник прослужит больше года, равна $0{,}93$. Вероятность того, что он прослужит больше двух лет, равна $0{,}84$. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.
Решение
Заметим, что из событий "чайник прослужит меньше года", "чайник прослужит от 1 до 2 лет" и "чайник прослужит больше двух лет" произойдёт обязательно ровно одно, то есть, говоря математическим языком, они попарно несовместны, а их объединение - достоверное событие. Следовательно, сумма вероятностей этих событий равна 1.
При этом события "чайник прослужит меньше года" и "чайник прослужит больше года" противоположны, поэтому вероятность события "чайник прослужит меньше года" равна 1 - 0.93 = 0.07. Заполним таблицу.
| Событие | Прослужит меньше года | Прослужит от 1 до 2 лет | Прослужит больше двух лет |
| Вероятность | 0.07 | ? | 0.84 |
Отсюда искомая вероятность равна 1 - 0.07 - 0.84 = 0.09.
Задача 10
При производстве в среднем на каждые $3012$ исправных веб-камер приходится $988$ неисправных. Найдите вероятность того, что случайно выбранная веб-камера окажется неисправной.
Решение
Из условия следует, что в среднем из каждых $3012+988=4000$ веб-камер $988$ неисправных. Тогда искомая вероятность равна ${988} / {4000}=0{,}247$.
Задача 11
В чемпионате по спортивной гимнастике участвуют $40$ спортсменов: $16$ — из России, $9$ — из Франции, остальные — из Беларуси. Порядок, в котором выступают гимнасты, определяется жребием. Найдите вероятность того, что спортсмен, выступающий первым, окажется из Беларуси.
Решение
Из Беларуси $40-16-9 = 15$ спортсменов. Будем считать, что случайный эксперимент заключается в том, что выбирается спортсмен, который будет выступать первым. Всего существует $40$ равновозможных исходов ($40$ спортсменов, все имеют равные шансы выступить первыми). Событию Первым будет выступать спортсмен из Беларуси благоприятствуют $15$ исходов. По определению искомая вероятность равна ${15}/{40} = {3}/{8} = 0.375$.
Задача 12
В среднем из $400$ приборов, поступивших в продажу, $5$ с браком. Найдите вероятность того, что один случайно выбранный для контроля прибор окажется бракованным.
Решение
Решение задачи на вероятность обнаружения бракованного прибора:
Известные данные:
• Бракованных приборов: 5
Формула классической вероятности:
Вычисляем вероятность:
Ответ: вероятность обнаружения брака =
Задача 13
На фестивале хеви-метал выступают группы — по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из Испании будет выступать после группы из Франции и перед группой из США? Результат округлите до сотых.
Решение
В условии задачи важен лишь порядок трёх групп относительно друг друга, при этом остальные группы (если таковые имеются) и место их выступления роли не играют. Фраза «группа из Испании будет выступать после группы из Франции и перед группой из США» означает то, что группы должны располагаться в следующем порядке: Франция — Испания — США (сокращённо «ФИС»). Заметим, что всего существует шесть способов расставить три группы по порядку:
1. Франция — США — Испания (ФСИ)
2. Франция — Испания — США (ФИС)
3. Испания — США — Франция (ИСФ)
4. Испания — Франция — США (ИФС)
5. США — Испания — Франция (СИФ)
6. США — Франция — Испания (СФИ)
Таким образом, жребий может иметь 6 равновозможных исходов, задающих порядок трёх групп относительно друг друга. Только один из этих исходов благоприятствует событию «группа из Испании будет выступать после группы из Франции и перед группой из США» (исход под номером 2). По определению искомая вероятность равна ${1}/{6} = 0.166 . . . ≈ 0.17$.
Задача 14
Конференция проводится в 4 дня. Запланировано 80 докладов — первые два дня по 23 доклада, остальные распределены поровну между третьим и четвёртым днями. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора А окажется запланированным на третий день конференции?
Решение
Решение задачи на вероятность распределения доклада:
Распределение докладов по дням:
• 2-й день: 23 доклада
• 3-й и 4-й дни: (80 - 23 - 23) = 34 доклада → по 17 докладов в день
Вероятность для доклада профессора А:
Вычисление:
Ответ: вероятность =
Задача 15
На фабрике $8%$ произведённых сумок имеют дефект. При контроле качества продукции выявляется $85%$ сумок с дефектом. Остальные сумки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке сумка не имеет дефектов. Результат округлите до тысячных.
Решение
Решение задачи на вероятность покупки качественной сумки:
Известные данные:
• Процент выявленных дефектных сумок: 85% от 8%
• Следовательно, процент невыявленных дефектных сумок: 15% от 8%
Вычисляем количество сумок, поступающих в продажу:
2. Невыявленные дефектные сумки: 0,15 × 0,08 = 0,012 (1,2%)
3. Качественные сумки: 1 - 0,08 = 0,92 (92%)
Сумки в продаже состоят из:
• Невыявленных дефектных: 0,012
Всего в продаже: 0,92 + 0,012 = 0,932
Вероятность покупки качественной сумки:
Округляем до тысячных:
Ответ: вероятность покупки качественной сумки ≈
Задача 16
Робин Гуд подошел к столу, на котором лежали 3 его старых лука и 2 новых. Он решил сбить стрелой яблоко с дерева. Робин попадает в цель из своего старого лука с вероятностью $0{,}8$, а из нового — с вероятностью $0{,}3$. Робин случайным образом выбирает один лук. Найдите вероятность того, что Робин промахнётся при стрельбе.
Решение
Решение задачи на вероятность промаха Робина Гуда:
Определим вероятности выбора луков:
• Вероятность выбрать старый лук: 3/5 = 0,6
• Вероятность выбрать новый лук: 2/5 = 0,4
Вероятности промаха для каждого типа луков:
• Для нового лука: 1 - 0,3 = 0,7
Используем формулу полной вероятности:
Подставляем значения:
= 0,12 + 0,28
= 0,40
Ответ: вероятность промаха =
Задача 17
Вероятность того, что новый электрический прибор прослужит больше года, равна $0{,}923$. Вероятность того, что он прослужит больше двух лет, равна $0{,}87$. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.
Решение
Решение задачи на вероятность работы прибора:
Введём обозначения событий:
B - прибор прослужит > 2 лет (P(B) = 0,87)
Искомая вероятность (прослужит от 1 до 2 лет):
Вычисляем:
Ответ: вероятность работы от 1 до 2 лет =
Задача 18
За круглый стол на 17 стульев в случайном порядке рассаживаются 15 мальчиков и 2 девочки. Найдите вероятность того, что обе девочки будут сидеть рядом.
Решение
Решение задачи через фиксацию первой девочки:
Алгоритм решения:
2. Остаётся 16 свободных мест
3. Рядом с первой девочкой 2 места (слева и справа)
Формула вероятности:
Ответ: вероятность =
Задача 19
Две фабрики выпускают одинаковые стержни для шариковых авторучек. Первая фабрика выпускает $75%$ этих стержней, вторая — $25%$. Первая фабрика выпускает $5%$ бракованных стержней, а вторая — $6%$. Найдите вероятность того, что случайно купленный в магазине стержень окажется бракованным.
Решение
Предположим, всего выпущено $n$ стержней. Тогда первая фабрика выпустила $0.75n$ стержней, а вторая — $0.25n$ стержней. Отсюда получим, что первая фабрика выпустила $0.75n · 0.05 = 0.0375n$ бракованных стержней. Вторая фабрика выпустила $0.25n · 0.06 = 0.015n$ бракованных стержней. Тогда всего бракованных стержней $0.0375n + 0.015n = 0.0525n$. По определению вероятность того, что купленный стержень бракованный, равна ${0.0525n}/{n} = 0.0525$.
Задача 20
Два завода выпускают одинаковые подшипники. Первый завод выпускает $38%$ всех подшипников, второй — $62%$. При проверке оказалось, что $2%$ продукции первого завода и $2{,}5%$ второго имеют скрытые дефекты. Найдите вероятность того, что случайно купленный подшипник окажется бракованным.
Решение
Решение задачи на вероятность покупки бракованного подшипника:
Введём обозначения:
• P₂ = 62% = 0,62 - доля 2-го завода
• Брак на 1-м заводе: 2% = 0,02
• Брак на 2-м заводе: 2,5% = 0,025
Используем формулу полной вероятности:
Подставляем значения:
= 0,0076 + 0,0155
= 0,0231
Ответ: вероятность брака =
Рекомендуемые курсы подготовки
- 👻 Вспомнишь алгебраические преобразования
- 👻 Отработаешь линейные, квадратные и дробно-рациональные уравнения
- 👻 Покоришь движение по воде
- 👻 И в целом крайне продуктивно проведешь время
на бесплатном курсе Турбо ЕГЭ