Задание 12. Планиметрия. ЕГЭ 2026 по математике (базовой)
Подпишись на суперполезные материалы
Задачи для практики
Задача 1
Прямые a и b параллельны. Найдите угол 2, если угол 1 равен $112°$. Ответ дайте в градусах.
Решение
Сначала найдем вертикальный угол для угла 1. Назовем его углом 3. Помним, что вертикальные углы равны. Углы 2 и 3 внутренние односторонние, а значит их сумма равна 180 градусам. Получаем: $112°+x=180°$, $x=68°$
Задача 2
По рисунку найдите угол b, если известно, что угол $b = 5a$.
Решение
На рисунке изображены смежные углы, а значит их сумма равна 180 градусам: $а+b=180°$. Так как по условию угол b равен 5а, значит в наше уравнение вместо b подставляем 5а. Получаем: $а+5а=180°$ $6а=180°$ $а=30°$. Мы нашли угол а, но в задаче нужно найти угол b: $b=5·30°$ $b=150$
Задача 3
Один из внешних углов треугольника равен $80^°$. Углы, не смежные с данным внешним углом, относятся как $2:3$ (см. рис.). Найдите наибольший из них. Ответ дайте в градусах.
Решение
Сумма углов, не смежных с данным внешним углом, равна величине этого внешнего угла, то есть $∠ A+∠ C=80°$. Обозначим $∠ A=2x$, $∠ C=3x$. $2x+3x=80$, $5x=80$, $x=16$. $∠ C=3x=3⋅ 16=48°$ — наибольший из углов $A$ и $C$.
Задача 4
Прямые a и b параллельны. Найдите угол 2, если угол 1 равен $70°$, а угол 3 равен $71°$. Ответ дайте в градусах.
Решение
Сначала найдем вертикальный угол для угла 1, затем вертикальный угол для угла 3. Помним, что вертикальные углы равны. Найденные углы находятся внутри образовавшегося треугольника. Сумма углов в треугольнике равна 180 градусам. Отсюда составляем уравнение и решаем его: $70°+71°+x=180°$, $x=39°$
Задача 5
В треугольнике $ABC$ угол $C$ равен $90^°$, $BC=9$, $\sin A={4} / {11}$ (см. рис.). Найдите $AB$.
Решение
$sin A = {BC}/{AB}, AB = {BC}/{sin A} = {9}/{{4}/{11}} = {99}/{4} = 24.75$.
Задача 6
В треугольнике $ABC$ угол $C$ равен $90^°$, катет $AC=16$, $\sin A={3} / {5}$ (см. рис.). Найдите $AB$.
Решение
$sinA = {BC}/{AB}, cosA ={AC}/{AB}, AB = {AC}/{cosA}$.
Из основного тригонометрического тождества $cosA = √{1 - sin^2 A} = √{1 -{9}/{25}} = {4}/{5}$.
$AB = {16}/{{4}/{5}} = {16·5}/{4} = 20$.
Задача 7
Площадь прямоугольника равна $22$. Найдите его б'ольшую сторону, если она на $9$ больше меньшей стороны.
Решение
$S_{ABCD} = AB·CB$.

Обозначим большую сторону через $x$, тогда меньшая сторона $x - 9$. Итак, $22 = x(x - 9), x^2 - 9x - 22 = 0, D = 81 + 88 = 169 = 13^2. x = {9±13}/{2}, x_1 = 11, x_2 = -2$ (не подходит).
Задача 8
Найдите площадь ромба, если его диагонали равны $3√ {7}$ и $12√ {7}$.
Решение
Рассмотрим ромб $ABCD$.

$S_{ABCD} = {1}/{2}d_1d_2$, где $d_1$ и $d_2$ - диагонали ромба.
$S_{ABCD} = {1}/{2}·3√7·12√7 = 18·7=126$.
Задача 9
Угол при вершине, противолежащей основанию равнобедренного треугольника, равен $30^°$. Боковая сторона треугольника равна $7$. Найдите площадь этого треугольника.
Решение
Пусть в $▵ ABC$ $∠ C=30°$, $AC=BC=7$ (см. рис.). $S_{ACB}={1} / {2} AC⋅ CB⋅ \sin ∠ ACB={1} / {2}⋅ 7⋅ 7⋅ \sin 30°={1} / {2}⋅ 49⋅ {1} / {2}={49} / {4}=12{,}25$.
Задача 10
Отрезки $MN$ и $AB$ — диаметры окружности с центром $O$ (см. рис.). Угол $MOB$ равен $116^°$. Найдите вписанный угол $MAB$. Ответ дайте в градусах.
Решение
$∠ MOB$ — центральный, он измеряется дугой $MB$. $∠ MAB$ — вписанный и он измеряется половиной дуги $MB$, то есть $∠ MAB={116°} / {2}=58°$.
Задача 11
В треугольнике $ABC$ $AC=BC$, $AB=15$
и $\tg ∠ BAC={2√ {5}} / {5}$ (см. рис.). Найдите высоту $AH$.
Решение
$tg ∠BAC = {CK}/{AK}, AK = {15}/{2}, CK = AK · tg ∠BAC={15}/{2}, {15}/{2}· {2√5}/{5} = 3√5$.
Найдём $AC$ из $△ACK$:
$AC = √{CK^2 + AK^2} = √{9·5+{225}/{4}} = √{{180+225}/{4}} = {9√5}/{2}; AC = BC$ (по условию), $BC = {9√5}/{2}$.
$S_{ABC} = {AB ·CK}/{2}, S_{ABC} = {CB· AH}/{2} ; AB · CK = CB · AH , AH = {AB·CK}/{CB} = {15 · 3√5 · 2}/{9√5} = 10$.
Задача 12
Найдите периметр прямоугольника, если его площадь равна $48$, а отношение соседних сторон равно $3:4$.
Решение
Рассмотрим прямоугольник $ABCD$ (см. рис.). $AD:AB=3:4$, $S_{ABCD}=AD⋅ AB$; $S_{ABCD}=48$, тогда
$48=AD⋅ AB$. Пусть $k$ — некоторое положительное действительное число и
$AD=3k$, $AB=4k$. Отсюда $48=3k⋅ 4k$; $48=12k^2$; $k^2=4$, $k=2$. Следовательно, $P=2(AD+AB)=2(3⋅ 2+4⋅ 2)=28$.
Задача 13
Основания равнобедренной трапеции равны $15$ и $9$. Высота трапеции равна $6$. Найдите тангенс острого угла.
Решение
Рассмотрим трапецию $ABCD$. Пусть $AB = CD, BK$ и $CM$ - высоты. Тогда $AK = MD$ и $AD = BC + 2AK$.
$tg ∠BAD = {BK}/{AK}, AK = {AD - BC}/{2} = {15 - 9}/{2} = 3, BK = 6$ (по условию). $tg ∠BAD = {6}/{3} = 2$.

Задача 14
В треугольнике $ABC$ угол $C$ равен $90^°$, $AC=4√ {7}$, $\tg A={√ {3}} / {2}$ (см. рис.). Найдите $AB$.
Решение
$\tg A={BC} / {AC}$, ${√ {3}} / {2}={BC} / {4√ {7}}$, $BC=2√ {21}$. $AB^2=AC^2+BC^2$; $AB^2=16⋅ 7+4⋅ 21$, $AB^2=112+84=196$, $AB=14$.
Задача 15
В треугольнике $ABC$ угол $C$ равен $90^°$, $CH$ — высота, $BC=14$, $\sin A= 0{,}5$. Найдите $BH$.
Решение
Дано:
- Угол C равен 90°.
- Сторона BC равна 14.
- Sинус угла A равен 0,5 (A равен 30°).
1. Найдем высоту CH:
CH = BC * sin A = 14 * 0,5 = 7.
2. Теперь найдем длину отрезка BH:
BH + CH = BC.
BH + 7 = 14.
BH = 14 - 7 = 7.
Ответ:
BH равно 7.
Задача 16
Площадь треугольника равна $72$, две его стороны равны $9$ и $24$. Найдите большую высоту этого треугольника.
Решение
Для нахождения высоты треугольника, используем формулу площади:
$$ S = 1/2 ∙ a ∙ h $$ Где $S$ - площадь треугольника, $a$ - основание, $h$ - высота к этому основанию.Рассмотрим две стороны: пусть $9$ будет основанием. Тогда:
$$ 72 = 1/2 ∙ 9 ∙ h_1 $$Решим уравнение для $h_1$:
$$ 72 = 9/2 ∙ h_1 => h_1 = 72 ∙ 2/{9} = 16 $$Теперь найдем высоту, соответствующую стороне $24$. Пусть это будет $h_2$:
$$ 72 = 1/2 ∙ 24 ∙ h_2 $$Решим уравнение для $h_2$:
$$ 72 = 12 ∙ h_2 => h_2 = 72/12 = 6 $$Таким образом, большая высота треугольника равна $16$.
Задача 17
Параллелограмм и прямоугольник имеют одинаковые стороны. Найдите острый угол параллелограмма, если его площадь относится к площади прямоугольника как $√ {3}:2$.
Решение
Пусть $ABCD$ — прямоугольник, $MNPQ$ — параллелограмм.
$S_{MNPQ} = {√3}/{2}S_{ABCD}, S_{MNPQ} = MN · MQ · sin ∠NMQ$.
$S_{ABCD} = AB · AD$, но $MN = AD, AB = MQ$ (по условию).
Тогда $MN · MQ · sin ∠NMQ = {√3}/{2} MN · MQ$ (по условию).
$sin ∠NMQ = {√3}/{2}, ∠NMQ = 60°$.

Задача 18
Параллелограмм и прямоугольник имеют одинаковые стороны. Сколько градусов составляет острый угол параллелограмма, если его площадь относится к площади прямоугольника как $1:√ {2}$?
Решение
Пусть $ABCD$ — прямоугольник, $MNPQ$ — параллелограмм (см. рис.).
$S_{MNPQ}={1} / {√ {2}} S_{ABCD}$, $S_{MNPQ}=MN⋅ MQ⋅ \sin ∠ NMQ$. $S_{ABCD}=AB⋅ AD$, но $MN=AD$, $AB=MQ$ (по условию). Тогда $MN⋅ MQ⋅ \sin ∠ NMQ={1} / {√ {2}} MN⋅ MQ$ (по условию). $\sin ∠ NMQ={1} / {√ {2}}$, $∠ NMQ=45°$.
Задача 19
Через концы $A$ и $B$ дуги окружности с центром $O$ проведены касательные $AC$ и $BC$ (см. рис.). Меньшая дуга $AB$ равна $48^°$. Найдите угол $ACB$. Ответ дайте в градусах.
Решение
$∠C AB = ∠C BA$, как углы между хордой и касательной, они измеряются половиной дуги $AB$, то есть $∠C AB = {1}/{2} ︶ AB$ и $∠C BA = {1}/{2} ︶ AB$.
Отсюда, $∠AC B = 180°- ︶AB = 180° - 48° = 132°$.
Задача 20
В треугольнике $ABC$ $AC=BC$, $AH$ — высота, $AB=15$, $\sin ∠ BAC={√ {5}} / {3}$ (см. рис.). Найдите $BH$.
Решение
В треугольнике напротив равных сторон лежат равные углы. $∠ BAC=∠ ABC$, $\sin ∠ ABC={AH} / {AB}$, $AH=AB \sin ∠ ABC$. $AH=15⋅ {√ {5}} / {3}=5√ {5}$. Из $▵ AHB:$ $HB=√ {AB^2-AH^2}=√ {225-125}=√ {100}=10$.
Рекомендуемые курсы подготовки
- Повторишь теорию по линейной и квадратичной функции
- Научишься быстро анализировать графики функций
- Узнаешь секреты производной в базовом ЕГЭ
- Сразу на вебинаре решишь все типы 7 задания
- Научишься применять теорию на практике и с легкостью будешь расправляться с №7 в ЕГЭ
на бесплатном курсе Турбо ЕГЭ