Задание 11. Прикладная стереометрия. ЕГЭ 2026 по математике (базовой)
Средний процент выполнения: 81.7%
Алгоритм решения задания 11:
Определите, какое пространственное тело или фигура описаны в условии задачи.
Выясните, какие элементы фигуры заданы и какие геометрические величины требуется найти.
Рассмотрите плоские сечения или грани фигуры и установите, какие планиметрические факты к ним применимы.
Используйте известные формулы и соотношения для вычисления длин, площадей или других величин.
Проверьте, что полученные значения соответствуют геометрическому смыслу задачи.
Подпишись на суперполезные материалы
Задачи для практики
Задача 1
К призме, основание которой квадрат со стороной 3, приклеили правильную четырёхугольную пирамиду с ребром 3 так, что квадратные грани совпали. Сколько граней у получившегося многогранника?
Решение
- Определение граней призмы:
- Определение граней пирамиды:
- Объединение фигур:
- Подсчёт общего количества граней:
У квадратной призмы есть:
- 2 квадратные грани (верхняя и нижняя).
- 4 прямоугольные грани (боковые).
Итого: 6 граней.
У правильной четырёхугольной пирамиды есть:
- 1 квадратная грань (основание).
- 4 треугольные грани (боковые).
Итого: 5 граней.
При приклеивании пирамиды к призме основание пирамиды совпадает с верхней гранью призмы.
Это означает, что мы не добавляем новую грань за счёт основания пирамиды.
Количество граней у получившегося многогранника:
От призмы:
- 1 нижняя квадратная грань (основание).
- 4 боковые прямоугольные грани.
От пирамиды:
- Учитываем только боковые треугольные грани: 4.
Итого:
1 + 4 + 4 = 9.
Ответ:
У получившегося многогранника 9 граней.
Задача 2
Здание имеет форму правильной четырёхугольной пирамиды, сторона основания которой равна 140 м, а высота - 88 м. Сторона основания макета, который является точной копией здания, равна 14 см. Найдите высоту макета. Ответ дайте в сантиметрах.
Решение
$a_1=140_{a}$; $h_1=88$м; $a_2=14$см; $h_2-?$
${a_1}/{h_1}={a_2}/{h_2}$ , $h_2={a_2h_1}/a_1={14·88}/{140}=8.8$(см)
Задача 3
В сосуде, имеющем форму конуса, уровень жидкости достигает ${1}/{4}$ высоты. Объём сосуда равен $640$ мл. Чему равен объём налитой жидкости? Ответ дайте в миллилитрах.
Решение
Шаг 1: Формула объема конуса
Объем конуса рассчитывается по формуле:
V = (1/3) * π * r² * h
Шаг 2: Объем жидкости в сосуде
Когда уровень жидкости достигает 1/4 высоты, объем налитой жидкости будет равен:
Vжидкости = V * (h'/h)3
где h' = 1/4 * h
Шаг 3: Вычисление объема налитой жидкости
Vжидкости = 640 * (1/4)3 = 640 * (1/64) = 10 мл
Ответ:
Объем налитой жидкости равен: 10 мл.
Задача 4
Деталь имеет форму изображённого на рисунке многогранника (все двугранные углы прямые). Числа на рисунке обозначают длины рёбер в сантиметрах. Найдите объём этой детали. Ответ дайте в кубических сантиметрах.
Решение
$V_{общ}=V_1+V_2=4·1·1+1·1·5=9$
Задача 5
Двускатную крышу дома, имеющего в основании прямоугольник, необходимо полностью покрыть рубероидом. Высота крыши равна 6 м, длины стен дома равны 16 и 20 м. Найдите, сколько рубероида (в квадратных метрах) нужно для покрытия этой крыши, если скаты крыши равны.
Решение
- Определение длины основания одного ската:
- Вычисление длины ската:
- Определение площади одного ската:
- Общая площадь крыши:
Для стены длиной 16 м: bA = lA/2 = 16/2 = 8 м.
Для стены длиной 16 м: sA = √(h² + bA²) = √(6² + 8²) = √(36 + 64) = √100 = 10 м.
SA= 10 * 20 = 200 м² .
S{общая}= SA*2=(200)*2=400 м².
Ответ:
Для покрытия двускатной крыши потребуется 400 квадратных метров рубероида.
Задача 6
Деталь имеет форму изображённого на рисунке многогранника (все двугранные углы прямые). Числа на рисунке обозначают длины рёбер в сантиметрах. Найдите объём этой детали. Ответ дайте в кубических сантиметрах.
Решение
Чтобы решить эту задачу, разобьем фигуру на два параллелепипеда: нижний со сторонами 5(длина), 3(ширина) и 2 (высота) и верхний со сторонами 3(длина), 3(ширина) и 3 (высота): $V=V_1+V_2=5·3·2+3·3·3=30+27=57(см^3)$.
Задача 7
Деталь имеет форму изображённого на рисунке многогранника (все двугранные углы прямые). Числа на рисунке обозначают длины рёбер в сантиметрах. Найдите площадь поверхности этой детали. Ответ дайте в квадратных сантиметрах.
Решение
Для нахождения площади поверхности параллелепипеда с вырезанным куском необходимо рассчитать площадь поверхности всего параллелепипеда и затем вычесть площадь вырезанного куска.
1. Площадь поверхности всего параллелепипеда:
Формула для площади поверхности прямоугольного параллелепипеда:
P = 2(ab + ac + bc),
где:- a = 5 см (длина)
- b = 5 см (ширина)
- c = 1 см (высота)
Подставим значения в формулу:
P = 2(5 × 5 + 5 × 1 + 5 × 1) = 2(25 + 5 + 5) = 2(35) = 70 см².
2. Площадь поверхности вырезанного куска:
Размеры вырезанного куска: 3 × 3 × 1.
Площадь поверхности вырезанного куска:
Pw = 2(3 × 3 + 3 × 1 + 3 × 1) = 2(9 + 3 + 3) = 2(15) = 30 см².
3. Корректировка площади поверхности:
При вырезании куска мы убираем его площадь, но добавляем площадь его внутренней стороны, которая не была включена в первоначальную площадь. Площадь внутренней стороны равна площади основания вырезанного куска (3 × 3):
Pвн = 3 × 3 = 9 см².
Итоговая площадь поверхности:
Pитог = P - Pw + Pвн
Pитог = 70 - 30 + 9 + 9 = 58 см².
Ответ:
Площадь поверхности детали составляет:
58 квадратных сантиметров.
Задача 8
В бак, имеющий форму прямой призмы, налито 6 л воды. После полного погружения детали в воду уровень воды поднялся в 1.5 раза. Найдите объём детали. Ответ дайте в кубических сантиметрах, зная, что в одном литре 1000 кубических сантиметров.
Решение
Изначальный объем воды в баке составляет:
6 л = 6 * 1000 = 6000 см³
После погружения детали уровень воды увеличился в 1.5 раза, значит общий объем воды стал:
6000 * 1.5 = 9000 см³
Объем детали равен разности между конечным объемом воды и изначальным объемом:
9000 - 6000 = 3000 см³
Ответ: объем детали составляет 3000 см³.
Задача 9
Однородный шар диаметром 3 см имеет массу 324 грамма. Чему равна масса шара, изготовленного из того же материала, с диаметром 2 см? Ответ дайте в граммах.
Решение
$m=pv;$ $m_1=p_1v_1=p_1·4/3πR_1^3$
$p_1=p_2$ $m_2=p_2v_2=p_2·4/3πR_1^3$
${m_1}/{m_2}={p_1·4/3πR_1^3}/{p_2·4/3πR_2^3}$
${m_1}/{m_2}={R_1^3}/{R_2^3};$ $m_2={m_1·R_2^3}/{R_1^3}$
$m_2={324·2^3}/{3^3}={324·8}/{27}=12·8=96$.
Задача 10
Однородный шар диаметром 1 см имеет массу 63 грамма. Чему равна масса шара, изготовленного из того же материала, с диаметром 2 см? Ответ дайте в граммах.
Решение
$d_1=1$см ; $m_1=63$гр ; $p_1=p_2$
$d_2=2$см ; $m_2-?$
${m_1}/{m_2}={p_1·v_1}/{p_2·v_2}={v_1}/{v_2}={4/3πR_1^3}/{4/3πR_2^3}={({R_1}/{R_2})}^3={({d_1}/{d_2})}^3=(1/2)^3=1/8$
$m_2=8m_1=8·63=504$ (гр)
Задача 11
Плоскость, проходящая через точки A, B и C, разбивает куб на два многогранника. Сколько вершин у получившегося многогранника с большим числом граней?
Решение
Куб имеет 8 вершин, 12 рёбер и 6 граней.
Когда плоскость проходит через три точки (A, B и C), она может разбить куб на два многогранника. Если плоскость проходит через три вершины куба, то один из получившихся многогранников будет иметь:
- 4 вершины от плоскости (через которые она проходит) и 6 дополнительных вершин куба.
- Таким образом, общее количество вершин у многогранника с большим числом граней составит 10.
Ответ: У многогранника с большим числом граней 10 вершин.
Задача 12
От кирпича отпилили 2 его вершины. Сколько граней у получившегося многогранника (невидимые рёбра на рисунке не изображены)?
Решение
Для того чтобы ответить на вопрос, давайте представим, как выглядит кирпич и что происходит при удалении двух его вершин.
Кирпич (или прямоугольный параллелепипед) имеет:
- 6 прямоугольных граней,
- 12 рёбер,
- 8 вершин.
Когда от кирпича отпиливают две его вершины, мы фактически создаём новые грани, заменяя эти вершины плоскостью, которая проходит через рёбра, соединяющие отпиленные вершины.
Теперь давайте посчитаем:
- После удаления двух вершин, количество граней увеличивается. Каждая удалённая вершина создаёт новую грань. Так как удалены две вершины, это добавляет две новые грани.
- Изначально у кирпича было 6 граней, но после удаления вершин число граней увеличится на 2, так что общее количество граней будет: $6 + 2 = 8$.
Таким образом, у получившегося многогранника будет 8 граней.
Ответ: 8 граней.
Задача 13
Найдите объём многогранника, изображённого на рисунке (все двугранные углы прямые).
Решение
5*5*8 - 6*1*5 = 200 - 30 = 170
Задача 14
Цилиндр объёмом $40$ см$^3$ и высотой $10$ см наполнили жидкостью до уровня $7$ см (см. рис.). Чему равен объём этой жидкости (в см$^3$)?
Решение
$V_{цилиндра}=40; h_{цилиндра}=10;h_ж=7; V_ж-?$
${V_{ц}=πR^2h_ц}/{V_ж=πR^2h_ж}={h_ц}/{h_ж}={10}/{7}$
$V_ж={7}/{10}V_{ц}={7}/{10}·40=28$
Задача 15
Найдите объём многогранника, изображённого на рисунке (все двугранные углы прямые).
Решение
10*4*5 - 1*10*2 = 200 - 20 = 180
Задача 16
Найдите объём многогранника, изображённого на рисунке (все двугранные углы прямые).
Решение

Найти $V-?$
$V=V_1+V_2=S_{осн._1}·h_1+S_{осн._2}·h_2=9·4·3+4·4·7=108+112=220$
Задача 17
В конус объёмом $24$ см$^3$ до середины высоты налили воду (см. рис.). Чему равен объём воды (в см$^3$)?
Решение
$V_{воды}=V_{конуса_1}-V_{конуса_2}={1}/{3}πR_1^2h_1-{1}/{3}πR_2^2h_2=$
$={1}/{3}π(R_1^2h_1-({R_1}/{2})^2·{h_1}/{2})={1}/{3}π·{7}/{8}R_1^2h_1={7}/{8}·({1}/{3}πR_1^2h_1)={7}/{8}·24=21$
Задача 18
Найдите объём пространственного креста, составленного из кубов со стороной 4.
Решение
$V_{куба}=d^3=64$
Крест состоит из 7 таких кубов, значит
$V_{креста}=7V_{куба}=7·64=448$
Задача 19
В сосуд, имеющий форму правильной тринадцатиугольной призмы налили $720 см^3$ воды, а затем полностью погрузили туда деталь. При этом уровень жидкости в сосуде поднялся с отметки $18$ см до отметки $21$ см. Чему равен объём детали? Объём выразите в $см^3$.
Решение
$V_1=720см^3; h_1=18; h_2=21; V_{дет}-?$
$V_{дет}=V_2-V_1=S_{осн}·(h_2-h_1)={V_1}/{h_1}·(h_2-h_1)={720}/{18}·(21-18)=40·3=120(см^3)$
Задача 20
В сосуд, имеющий форму правильной треугольной призмы, налили $600$ см$^3$ воды (см. рис.) и полностью погрузили в неё деталь. При этом уровень жидкости в сосуде поднялся с отметки $12$ см до отметки $16$ см. Чему равен объём детали? Ответ выразите в см$^3$.
Решение
Обозначим через $S$ площадь основания призмы. Тогда из формулы объёма призмы $V = Sh$ имеем $12S = 600$, $S = 50$ (см$^2$). После погружения детали суммарный объём детали и воды вычисляется по той же формуле: $50 ⋅ 16 = 800$ (см$^3$). Объём детали равен $800 - 600 = 200$ (см$^3$).
Рекомендуемые курсы подготовки
- 👻 Вспомнишь алгебраические преобразования
- 👻 Отработаешь линейные, квадратные и дробно-рациональные уравнения
- 👻 Покоришь движение по воде
- 👻 И в целом крайне продуктивно проведешь время
на бесплатном курсе Турбо ЕГЭ