Задание 14. Системы счисления. Кодирование чисел. ЕГЭ 2026 по информатике

За это задание ты можешь получить 1 балл. На решение дается около 6 минут. Уровень сложности: повышенный.
Средний процент выполнения: 55.5%
Ответом к заданию 14 по информатике может быть цифра (число) или слово.

Задачи для практики

Задача 1

Операнды арифметического выражения записаны в системе счисления с основанием 13:
186x4 + 5x716.
В записи чисел переменной x обозначена неизвестная цифра из алфавита 13-ричной системы счисления. Определите наименьшее значение x, при котором значение данного арифметического выражения кратно 11. Для найденного значения x вычислите частное от деления значения арифметического выражения на 11 иукажитееговответе в десятичной системе счисления. Основание системы счисления в ответе указывать не нужно.

Решение

Приведем первое решение на Python

alphabet = '0123456789abc'
for x in alphabet:
f = int(f'186{x}4',13) + int(f'5{x}716',13)
if f % 11 == 0:
print(f//11)
break
 
Ответ: 18182
Показать решение
Бесплатный интенсив

Задача 2

Операнды арифметического выражения записаны в системе счисления с основанием 18: 79x35 + bx197.

В записи чисел переменной x обозначена неизвестная цифра из алфавита 18-ричной системы счисления. Необходимо определить наименьшее значение x, при котором значение данного арифметического выражения делится на 15. После нахождения значения x вычислить частное от деления значения выражения на 15 и указать его в ответе в десятичной системе счисления. Основание системы счисления в ответе указывать не нужно.

Решение

Приведем решение на Python

import string
print(string.ascii_lowercase)
alphabet = '0123456789abcdefgh'
for x in alphabet:
expression = int(f'79{x}35',18)+int(f'b{x}197',18)
if expression % 15 == 0:
print(expression // 15)
break

import string
print(string.ascii_lowercase) Используй для того, чтобы вспомнить, какие буквы в 18-сс.
Ответ: 130328
Показать решение
Бесплатный интенсив

Задача 3

Значение арифметического выражения
125300 · 5300 − 2570 − 100
записали в системе счисления с основанием 5. Сколько цифр «4» содержится в этой записи?

Решение

Приведем первое решение на Python

a = 125 ** 300 * 5 ** 300 - 25 ** 70 - 100
cnt_4 = 0
a = abs(a)
while a > 0:
if a % 5 == 4:
cnt_4 += 1
a //= 5
print(cnt_4)


Приведем Второе решение на Python
a = 125 ** 300 * 5 ** 300 - 25 ** 70 - 100
new_str = ''
a = abs(a)
while a > 0:
new_str = str(a % 5) + new_str
a //= 5
print(new_str.count('4'))
 
Ответ: 1196
Показать решение
Бесплатный интенсив

Задача 4

Операнды арифметического выражения записаны в системе счисления с основанием 18: 76x35 + ax192.

В записи чисел переменной x обозначена неизвестная цифра из алфавита 18-ричной системы счисления. Определите наименьшее значение x, при котором значение данного арифметического выражения кратно 13. Для найденного значения x вычислите частное от деления значения арифметического выражения на 13 и укажите его в ответе в десятичной системе счисления. Основание системы счисления в ответе указывать не нужно.

Решение

Приведем решение на Python

import string
print(string.ascii_lowercase)
alphabet = '0123456789abcdefgh'
for x in alphabet:
expression = int(f'76{x}35',18)+int(f'a{x}192',18)
if expression % 13 == 0:
print(expression // 13)

Используй, чтобы вспомнить какие буквы есть в 18-сс
import string
print(string.ascii_lowercase)
Ответ: 145219
Показать решение
Бесплатный интенсив

Задача 5

Значение выражения
2435 +37 −2−X
записали в системе счисления с основанием 3, при этом в записи оказалось ровно 20 цифр «2».При каком минимальном целом положительном X это возможно?

Решение

Приведем решение на Python

for x in range(1, 10000):
a = 243**5 + 3**7-2-x
a = abs(a)
strr = ''
while a > 0:
strr = str(a % 3) + strr
a //= 3
if strr.count('2') == 20:
print(x)
break
Ответ: 2307
Показать решение
Бесплатный интенсив

Задача 6

Значение выражения

818 + 3- 9 - X

записали в системе счисления с основанием 3, при этом в записи оказалось ровно 30 цифр«2». При каком минимальном целом положительном X это возможно?

Решение

Приведем решение на Python

for x in range(1, 10000):
a = 81 ** 8 + 3 ** 7 - 9 - x
a = abs(a)
strr = ''
while a > 0:
strr = str(a % 3) + strr
a //= 3
if strr.count('2') == 30:
print(x)
break
Ответ: 2183
Показать решение
Бесплатный интенсив

Задача 7

Значение выражения

17 · 7108 − 10 · 4978 + 34335 − 100

записали в системе счисления с основанием 49. Для найденного числа вычислите сумму цифр и укажите её в ответе в десятичной системе счисления.

Решение

Приведем решение на Python

a = 17 * 7 ** 108 - 10 * 49 ** 78 + 343 ** 35 - 100
sum_digit = 0
a = abs(a)
while a > 0:
sum_digit += a % 49
a //= 49
print(int(sum_digit))
Ответ: 1238
Показать решение
Бесплатный интенсив

Задача 8

Значение выражения

15 · 7108 − 10 · 5178 + 34337 − 256

записали в системе счисления с основанием 49. Для найденного числа вычислите сумму цифр и укажите её в ответе в десятичной системе счисления.

Решение

Приведем решение на Python

a = 15 * 7 ** 108 - 10 * 51 ** 78 + 343 ** 37 - 256
a = abs(a)
sum_digit = 0
while a > 0:
sum_digit += a % 49
a //= 49
print(sum_digit)
Ответ: 2004
Показать решение
Бесплатный интенсив

Задача 9

Дано арифметическое выражение:

$42Ax1_{13}$-$Bx81_{13}$

В записи чисел переменной х обозначены неизвестная цифра из алфавита 13-ричной системы счисления. Определите наибольшее значение х, при котором значение данного арифметического выражения кратно 9. Для найденного значения х вычислите частное от деления значения арифметического выражения на 9 и укажите его в ответе в десятичной системе счисления. Основание системы счисления в ответе указывать не нужно.

Решение

Напишем код для решения задания на Python:

y = "0123456789ABC"
for x in y:
    a = "42A"+x+"1"
    b = "B"+x+"81"
    a = int(a, 13)
    b = int(b, 13)
    if (a-b) % 9 == 0:
        print(x, (a-b) // 9)

Ответ: 10465.

Ответ: 10465
Показать решение
Бесплатный интенсив

Задача 10

Дано арифметическое выражение:

$123x56_{15}$+$78x90_{15}$

В записи чисел переменной х обозначены неизвестная цифра из алфавита 15-ричной системы счисления. Определите наименьшее значение х, при котором значение данного арифметического выражения кратно 7. Для найденного значения х вычислите частное от деления значения арифметического выражения на 7 и укажите его в ответе в десятичной системе счисления. Основание системы счисления в ответе указывать не нужно.

Решение

Напишем код для решения задания на Python:

y = "0123456789ABCDE"
for x in y:
    a = "123"+str(x)+"56"
    b = "78"+str(x)+"90"
    a = int(a, 15)
    b = int(b, 15)
    if (a+b) % 7 == 0:
        print((a+b) // 7)

Ответ: 179163.

Ответ: 179163
Показать решение
Бесплатный интенсив

Задача 11

Дано арифметическое выражение:

$1x546_{18}$+$FAx9B_{18}$

В записи чисел переменной х обозначены неизвестная цифра из алфавита 18-ричной системы счисления. Определите наименьшее значение х, при котором значение данного арифметического выражения кратно 13. Для найденного значения х вычислите частное от деления значения арифметического выражения на 13 и укажите его в ответе в десятичной системе счисления. Основание системы счисления в ответе указывать не нужно.

Решение

Напишем код для решения задания на Python:

y = "0123456789ABCDEFGH"
for x in y:
    a = "1"+str(x)+"546"
    b = "FA"+str(x)+"9B"
    a = int(a, 18)
    b = int(b, 18)
    if (a+b) % 13 == 0:
        print((a+b) // 13)

Ответ: 136199.

Ответ: 136199
Показать решение
Бесплатный интенсив

Задача 12

Операнды арифметического выражения записаны в системе счисления с основанием 15.

3794x2915 + 12x2315

В записи чисел переменной x обозначена неизвестная цифра из алфавита 15-ричной системы счисления. Определите наименьшее значение x, при котором значение данного арифметического выражения кратно 14. Для найденного значения x вычислите частное от деления значения арифметического выражения на 14 и укажите его в ответе в десятичной системе счисления. Основание системы счисления указывать не нужно.

Решение
for x in '0123456789ABCDE':
    if (s := int(f'3794{x}29', 15) + int(f'12{x}23', 15)) % 14 == 0:
        print(s // 14, x)
Ответ: 2858148
Показать решение
Бесплатный интенсив

Задача 13

ДЛЯ 2022

Значение арифметического выражения

4 * 62849 – 2 * 361019 + 61680 – 4 * 36157 - 543
записали в системе счисления с основанием 6. Вычислите сумму цифр получившегося этого числа?

Решение

Данный номер проще всего решить с использованием программы

x = 4 * 6 ** 2849 - 2 * 36 ** 1019 + 6 ** 1680 - 4 * 36 ** 157 - 543
s = 0
while x > 0:
    s += x % 6
    x //= 6
print(s)
Ответ: 12446
Показать решение
Бесплатный интенсив

Задача 14

Значение арифметического выражения

4 * 162849 + 12 * 2561019 - 161680 – 4 * 16157 - 1245
записали в системе счисления с основанием 16. Сколько цифр B содержится в этой записи?

Решение

Цифра B соответствует числовому значению 11, поэтому будем считать, сколько раз встречается остаток равный 11 при переводе в 16 систему счисления.

x = 4 * 16 ** 2849 + 12 * 256 ** 1019 - 16 ** 1680 - 4 * 16 ** 157 - 1245
k = 0
while x > 0:
    if x % 16 == 11:
        k += 1
    x //= 16
print(k)
Ответ: 3
Показать решение
Бесплатный интенсив

Задача 15

Выражение 343 · $49^8$ + 2401 · $343^10$ − 336? записали в семеричной системе счисления. Сколько значащих нулей содержится в этой записи?

Решение

Преобразуем слагаемые к общему основанию:

$7^3 · 7^16 + 7^4 · 7^30 − 7^3 + 7 = 7^19 + 7^34 − 7^3 + 7$

Не забываем расставлять слагаемые в порядке убывания показателя степени!

Тогда выражение примет вид:

$7^34 + 7^19 − 7^3 + 7$

Рассмотрим запись выражения в семеричной системе счисления:

$7^34 −$ единица и 34 нуля($7^n$ = единица и n нулей);

$7^19−7^3 −$ 16 шестёрок и 3 нуля ($7^m − 7^n = 6...60...0$, где $(m − n)$ шестёрок и $n$ нулей);

$7 −$ единица и ноль

Вычитаем из общего количества значащих нулей (у старшего слагаемого) количество цифр, отличных от нуля: $34 − 16 − 1 = 17$

Ответ: 17
Показать решение
Бесплатный интенсив

Задача 16

Выражение $64^15 + 16^10 − 4^32 − 56$ записали в системе счисления с основанием 4. Сколько цифр "3" содержится в этой записи?

Решение

Преобразуем слагаемые к общему основанию:

$4^45 + 4^20 − 4^32 − 4^3 + 2· 4^1$

Не забываем расставлять слагаемые в порядке убывания показателя степени!

Тогда выражение примет вид:

$4^45 − 4^32 + 4^20  − 4^3 + 2 · 4^1$

Тройки при записи в четверичной системе счисления будут давать пары положительного и отрицательного числа по формуле 

$4^m − 4^n = 3...30...0$, где $(m − n)$ троек и $n$ нулей

Значит получим: $(45 − 32) + (20 − 3) = 30$ троек

Ответ: 30
Показать решение
Бесплатный интенсив

Задача 17

Выражение $625^25 + 25^50 − 5^9 − 619$ записали в пятеричной системе счисления. Сколько цифр "4" содержится в этой записи?

Решение

Преобразуем слагаемые к общему основанию:

$5^100 + 5^100 − 5^9 − 5^4 + 5 + 5^0$

Раскроем $− 5^9$ по формуле: $-5^n = −5^(n+1) + 4 · 5^n$ (общий вид формулы: $-a^n = -a^(n+1) + (a − 1) · a^n$)

Тогда выражение примет вид:

$2 · 5^100 − 5^10 + 4 · 5^9 − 5^4 + 5 + 5^0$

Четвёрки при записи в пятеричной системе счисления будут давать пары положительного и отрицательного числа по формуле 

$5^m − 5^n = 4...40...0$, где $(m − n)$ четверок и $n$ нулей

Значит получим: $(100 − 10) + (9 − 4) = 95$ четвёрок

Важно обратить внимание, что множители перед положительными слагаемыми ($2 · 5^100$ и $4 · 5^9$) не влияют на количество четвёрок в записи

Ответ: 95
Показать решение
Бесплатный интенсив

Задача 18

Выражение 36 · $216^8$ + 1296 · $216^7$ − 30? записали в шестеричной системе счисления. Сколько значащих нулей содержится в этой записи?

Решение

Преобразуем слагаемые к общему основанию:

$6^2 · 6^24 + 6^4 · 6^21 − 6^2 + 6 = 6^26 + 6^25 − 6^2 + 6$

Не забываем расставлять слагаемые в порядке убывания показателя степени!

Тогда выражение примет вид:

$6^26 + 6^25 − 6^2 + 6$

Рассмотрим запись выражения в шестеричной системе счисления:

$6^26 −$ единица и 26 нулей(6^n = единица и n нулей);

$6^25−6^2 − это $ 23 пятёрки и 2 нуля ($6^m − 6^n = 5...50...0$, где $(m − n)$ пятёрок и $n$ нулей);

$6 −$ единица и ноль

Вычитаем из общего количества значащих нулей (у старшего слагаемого) количество цифр, отличных от нуля: $26 − 23 − 1 = 2$

Ответ: 2
Показать решение
Бесплатный интенсив

Задача 19

Выражение $27^275$ + $9^15$ − $9^6$ − $27$ записали в троичной системе счисления. Сколько цифр "2" содержится в этой записи?

Решение

Преобразуем выражение: $3^825$ + $3^30$ - $3^12$-$3^3$

$-3^12$ раскрываем как -$3^13$ + 2 * $3^12$

В итоге получим выражение: $3^825$ + $3^30$ -$3^13$ + 2 * $3^12$ - $3^3$

Выражение $3^825$ выглядит как единица и 825 нулей, выражение $3^30$ -$3^13$ как 17 двоек и 13 нулей, 2 * $3^12$ - $3^3$ (в столбик) как единица, 9 двоек и 3 нуля .

Итого: 26

Ответ: 26
Показать решение
Бесплатный интенсив

Задача 20

Выражение $1024^6$ + $128^10$ − 2048? записали в двоичной системе счисления. Сколько цифр "1" содержится в этой записи?

Решение

Преобразуем выражение: $2^60$ + $2^70$ - $2^11$

Выражение $2^70$ выглядит как единица и 70 нолей, а выражение $2^60$ - $2^11$ как 49 единиц и 11 нолей

Итого: 50

Ответ: 50
Показать решение
Бесплатный интенсив
Показать еще
  • Без воды
  • Ламповая атмосфера
  • Крутые преподаватели

ЕГЭ 2026: бесплатный курс
по информатике

На бесплатном демо-курсе ты:
  • Узнаешь всё про кодирование: что это такое и как происходит
  • Познакомишься с Условием Фано: как оно примняется и почему важно
  • Научишься считать колиечтсво информации и сколько под неё нужно выделить памяти
Получи бесплатный демо-доступ
Оставь заявку и займи место
на бесплатном курсе Турбо ЕГЭ
Нажимая на кнопку «Отправить», вы принимаете положение об обработке персональных данных.