Теория для 2 задания ЕГЭ по информатике
Основная тема задания №2 — алгебра логики. С неё и начнём. Для успешного решения номера вам важно знать 3 теоретических момента:
- Основные логические операции
- Порядок логических операций
- Законы логики
Основные логические операции
1. Инверсия «НЕ»
Логическое отрицание
Обозначения: ¬А, Ā
Меняет значение на противоположное
2. Конъюнкция «И»
Логическое умножение
Обозначения: А∧В, А & В, А и В, AB
Принимает значение «истина», когда все значения единицы.
Хотя бы один 0 обнуляет всё.
3. Дизъюнкция «ИЛИ»
Логическое сложение
Обозначения: А∨В, А | В, А или В
Принимает значение «истина», когда хотя бы одна единица. «Ложь», когда все нули.
4. Импликация "Если, то"
Следование
Обозначения: А→В, А => В
Из истины следует истина, из лжи что угодно
5. Эквивалентность «Равны»
Тождество
Обозначения: А≡В, А <=> В
Иcтина, когда значения одинаковы. Ложь, когда различны
Порядок логических операций
- Действия в скобках
- Инверсия
- Конъюнкция
- Дизъюнкция
- Импликация
- Эквивалентность
Законы логики
Законов логики существует огромное количество, но именно для ЕГЭ достаточно знать 10 законов из данной таблицы. Некоторые из них очевидные, некоторые придётся выучить.
Практика
Основных вариантов решения два: логические рассуждения, либо построение таблицы истинности. Иногда проще решать первым методом, иногда вторым.
Первый метод. Логические рассуждения.
Пример:
Логическая функция F задаётся выражением y ∧ (x → z) ∧ ¬w. Во фрагменте таблицы истинности приведены все строки, при которых значение функции F истинно.Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.
Решение:
Итоговая функция всегда истинна для нашей таблицы (единички в значениях F). Заметим, что в последнюю очередь выполняются две конъюнкции, значение которых будет = 1 только тогда, когда значение каждого выражение равно 1.
Вывод:
y = 1
(x → z) = 1
¬w = 1,а значит w = 0
y всегда 1, такой столбик лишь один: y — переменная 4
w всегда 0, такой столбик лишь один: w — переменная 2
Для x и z остаётся переменная 1 и переменная 3. Осталось определится с порядком.
(x → z) = 1, значит не может быть набора, когда x = 1, а z = 0.
Во второй строчке перем1 = 1, а перем3 = 0. Следовательно, z — переменная 1, x — переменная 3.
z — переменная 1
w — переменная 2
x — переменная 3
y — переменная 4
Ответ: zwxy
Второй метод. Таблица истинности
Пример:
Логическая функция F задаётся выражением (y → w) ∨ (¬x ∧ z). Во фрагменте таблицы истинности приведены все строки, при которых значение функции F ложно. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.
Решение:
Итоговая функция всегда равна нулю. Между скобками дизъюнкция, значит обе скобки должны быть ложными. Рассмотрим каждую скобку отдельно:
y → w = 0
¬x ∧ z = 0
Объединяем все переменные в одну таблицу:
Соотносим её с таблицей из условия:
y — переменная 4
w — переменная 2
x — переменная 1
z — переменная 3
Ответ: xwzy