Задание 19. Анализ геометрических высказываний. ОГЭ 2026 по математике
Подпишись на суперполезные материалы
Задачи для практики
Задача 1
Укажите номера верных утверждений.
- Точка касания двух окружностей лежит на линии центров.
- Отрезок, соединяющий середины диагоналей трапеции, равен полуразности оснований.
- Точка пересечения биссектрис треугольника является центром описанной окружности.
Решение
Задача 2
Укажите номера верных утверждений.
- Если в четырёхугольнике две противоположные стороны равны, то этот четырёхугольник — параллелограмм.
- Сумма углов любого треугольника равна $180^°$.
- Через любые три точки плоскости проходит только одна прямая.
Решение
Задача 3
Укажите номера верных утверждений.
- Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, то треугольники подобны.
- Если при пересечении двух прямых третьей образуются равные соответственные углы, то прямые параллельны.
- Вписанные углы, опирающиеся на одну и ту же дугу, равны.
Решение
Задача 4
Укажите номера верных утверждений.
- У равнобедренного треугольника есть центр симметрии.
- Если в ромбе один угол прямой, то этот ромб — квадрат.
- Центр окружности, описанной около треугольника лежит в точке пересечения серединных перпендикуляров к сторонам.
Решение
Задача 5
Укажите номера верных утверждений.
- Трапеция является равнобедренной, если два угла, прилежащих к боковой стороне, равны.
- Сумма внутренних углов выпуклого n-угольника равна $180^°·(n−2)$.
- Квадратом называется прямоугольник, все стороны которого равны.
Решение
Задача 6
Укажите номера верных утверждений.
- Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.
- Отношение площадей подобных треугольников равно коэффициенту подобия.
- Площадь ромба равна половине произведения его диагоналей.
Решение
Задача 7
Укажите номера верных утверждений.
- Две прямые, перпендикулярные одной и той же прямой, параллельны.
- Биссектрисы внутренних односторонних углов при параллельных прямых и секущей перпендикулярны.
- Сумма внешних углов $n$-угольника больше $360^°$
Решение
Задача 8
Укажите номера верных утверждений.
- Если при пересечении двух прямых третьей образуются равные накрест лежащие углы, то прямые параллельны.
- Существует прямоугольник, у которого диагонали не равны.
- Произведение секущей на её внешнюю часть равно квадрату касательной, проведённой к окружности из одной точки с секущей.
Решение
Задача 9
Укажите номера верных утверждений.
- Для точки, являющейся точкой касания прямой и окружности, расстояние от центра окружности до этой точки равно радиусу окружности.
- Все биссектрисы равностороннего треугольника равны.
- В равнобедренном треугольнике все высоты равны.
Решение
Задача 10
Укажите номера верных утверждений.
- В ромбе диагонали равны.
- Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то эти треугольники равны.
- Около любого квадрата можно описать окружность.
Решение
Задача 11
Укажите номера верных утверждений.
- Существует бесконечное множество прямых, которые проходят через одну точку.
- Если одна сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
- Сумма углов трапеции равна $180^°$.
Решение
Задача 12
Укажите номера неверных утверждений.
- Средняя линия трапеции проводится через середины оснований трапеции.
- Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то треугольники равны.
- Если диагонали четырёхугольника делятся точкой пересечения пополам, то этот четырёхугольник — ромб.
Решение
Задача 13
Укажите номера верных утверждений.
- Квадрат не имеет центра симметрии.
- Медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна половине гипотенузы.
- Угол между двумя секущими, пересекающимися вне круга, равен полуразности дуг, высекаемых секущими на окружности.
Решение
Задача 14
Укажите номера верных утверждений.
- Отношение сторон подобных треугольников равно коэффициенту подобия.
- В ромбе диагонали взаимно перпендикулярны.
- Центр вписанной в треугольник окружности лежит в точке пересечения высот треугольника.
Решение
Задача 15
Укажите номера верных утверждений.
- Касательная к окружности перпендикулярна радиусу, проведённому в точку касания.
- Из двух хорд окружности больше та, которая более удалена от центра.
- Площадь параллелограмма равна произведению его соседних сторон на синус угла между ними.
Решение
Задача 16
Укажите номера верных утверждений.
- Точка, лежащая на биссектрисе угла, равноудалена от сторон угла.
- Если в треугольнике есть один тупой угол, то этот треугольник тупоугольный.
- Около любого четырёхугольника можно описать окружность.
Решение
Задача 17
Укажите номера верных утверждений.
- Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
- Центр окружности, описанной около прямоугольного треугольника, — это середина гипотенузы.
- Любые два прямоугольных треугольников подобны
Решение
Задача 18
Укажите номера верных утверждений.
- Площадь правильного треугольника со стороной $a$ равна ${a^2√ {3}}/{4}$
- Отрезок, соединяющий середины двух сторон треугольника, называется средней линией треугольника.
- Около любого ромба можно описать окружность.
Решение
Задача 19
Укажите номера верных утверждений.
- Если при пересечении двух прямых третьей сумма внутренних односторонних углов равна $180^°$, то прямые параллельны.
- Угол между биссектрисами смежных углов равен $100^°$
- Точка пересечения диагоналей трапеции, точка пересечения продолжений боковых сторон и середины оснований лежат на одной прямой.
Решение
Задача 20
Укажите номера верных утверждений.
- Величина дуги окружности равна величине центрального угла, на неё опирающегося.
- Квадрат гипотенузы равен сумме квадратов катетов.
- Площадь параллелограмма равна произведению двух его сторон.
Решение
Рекомендуемые курсы подготовки
- Разберешься в разных типах функций
- Сможешь быстро решать задания №11 ОГЭ и заберешь свой балл за него на экзамене
- Получишь крутую базу для задания №22 из письменной части ОГЭ
- Поймешь, что графики функций не так страшны, как казалось раньше
на бесплатном курсе Турбо ЕГЭ