

Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов.

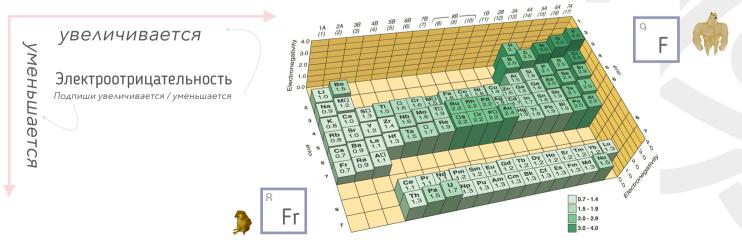
Заряд ядра - это основная характеристика атома, равная номеру элемента в периодической системе.

Периодический закон важен тем, что определяет направление изменения свойств в ПС.

Посмотрим на основные закономерности изменения характеристик:

PA3MEP ATOMA

Размер атома - это его радиус.

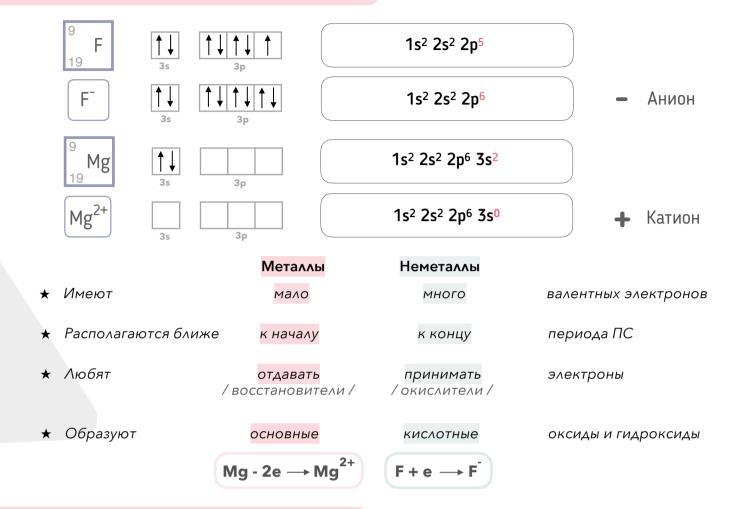


Сверху вниз по группе увеличивается количество электронных слоев (энергетических уровней).

Слева направо по периоду количество слоев не меняется, но увеличивается количество электронов на внешнем слое. Это приводит к тому, что электроны внешнего слоя сильнее притягиваются к положительно заряженному ядру.

ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ

Электроотрицательность - способность атомов перетягивать на себя электронную плотность химической связи.

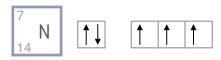


• ПЕРИОДИЧЕСКИЙ ЗАКОН

МЕТАЛЛИЧНОСТЬ И НЕМЕТАЛЛИЧНОСТЬ

∑ ПОДВОДИМ ИТОГИ

Свойство	Изменение сверху вниз по группе	Изменение слева направо по периоду
Размер атома (радиус)		+
Электроотрицательность	+	A
Неметалличность	+	A
Металличность		+
Окислительные свойства	+	1
Восстановительные свойства		+
Кислотные свойства оксидов и гидроксидов	+	1
Основные свойства оксидов и гидроксидов		\

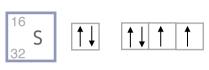


СТЕПЕНЬ ОКИСЛЕНИЯ

Степень окисления - заряд, приобретённый атомом, отдавшим или принявшим электроны.

-> Высшая степень окисления = номеру группы / кроме О, F, Cu, Co, Ni, благородных газов /

-> Низшая отрицательная степень окисления = номер группы - 8 / кроме металлов, имеющих ТОЛЬКО положительные степени окисления! /


Высшая степень окисления +5
Низшая степень окисления -3

Высшая степень окисления +1
Низшая степень окисления -1

Высшая степень окисления +2
Низшая степень окисления 0

Высшая степень окисления +6
Низшая степень окисления -2

 \uparrow

Высшая степень окисления +7
Низшая степень окисления -1

 $\uparrow\downarrow$

Высшая степень окисления +2
Низшая степень окисления -2

0

Низшая степень окисления —1

Высшая степень окисления

Постоянную степень окисления имеют атомы:

★ Щелочные металлы (IA подгруппа) -> +1

★ Алюминий -> +3

★ Щелочноземельные металлы (IIA подгруппа) -> +2

★ Фтор -> -1

Почти постоянную степень окисления имеют атомы:

★ Кислород -> -2

★ Водород -> +1

★ Хлор, бром, йод -> -1

Расставь степени окисления:

В молекулах важно сохранять принцип электронейтральности: сумма степеней окисления атомов с учетом их количества равна нулю.

Степени окисления в сложных соединениях:

HCI

 SO_2

SO₃

NH₄CI

PCI₃

K₂O

KO₂

NH₄NO₂

PCI₅

NH₃

CaH₂

NH₄NO₃

