desktop/phys.jpg mobile/phys.jpg

Задание 29. Механика (расчетная задача). ЕГЭ 2021 по физике

За это задание ты можешь получить 3 балла. Уровень сложности: высокий.
Средний процент выполнения: 19.2%
Ответом к заданию 29 по физике может быть развернутый ответ (полная запись решения с обоснованием выполненных действий).

Задачи для практики

Задача 1

Камень бросили в горизонтальном направлении. Через 3 с его скорость оказалась направленной под углом 30◦ к горизонту. Определите начальную скорость камня. Сопротивлением воздуха пренебречь.

Решение

Дано:

$t=3$с

$α=30°$

$g=10м/с^2$

$υ_0-?$

Решение:

Движение тела, брошенного горизонтально с начальной скоростью $υ_0↖{→}$ с высоты $h$ рассматривают как комбинацию двух движений: - горизонтальное (равномерное) со скоростью $υ_0↖{→}$; - вертикальное свободное падение (равноускоренное с ускорением $g↖{→}$). Из рисунка видно, что $υ_y=g·t$(2), где $g=10м/с^2$ - ускорение свободного падения. Подставим (2) в (1) и выразим $υ_0$: $υ_0={υ_y}/{tgα}={gt}/{tgα}$(3). Подставим числовые значения в (3): $υ_0={10·3}/{tg30°}={30}/{{1}/{√3}}={30}/{1}:{1}/{√3}=30·√3=30·1.732=51.9$м/с.

Ответ: 51.9
Показать решение
Полный курс

Задача 2

Тело бросили вертикально вверх с начальной скоростью 20 м/с. Определите промежуток времени между последовательными положениями тела на высоте 5 м. Ускорение свободного падения принять равным 10 $м/с^2$. Ответ представить в с, округлив до десятых

Решение

Дано:

$υ_0=20м/с$

$g=10м/с^2$

$h=5$м

$∆t-?$

Решение:

Найдем время полета тела, учтем, что перемещение в этом случае $S=0$м: $0=υ_0t-{gt^2}/{2}$, откуда ${gt^2}/{2}=υ_0t$ или $t={2υ_0}/{g}={2·20}/{10}=4c$(1).

Найдем время $t'$, за которое тело поднимется на высоту $h$: $h=υ_0t'-{gt'^2}/{2}⇒{gt'^2}/{2}-υ_0t'+h=0$(2). Подставим числа в (2) для простоты расчетов: ${10t'^2}/{2}-20t'+5=0$ или $5t'_2-20t'+5=0|:5$

$t'_2-4t'+1=0$

$D=b^2-4ac=16-4·1·1=16-4=12$

$t'_{1,2}={-b±√D}/{2a}={4±√12}/{2}; t'_1={4-√12}/{2}={4-3.4641}/{2}=0.268c; t'_2={4+√12}/{2}$ - не удовлетворяет условию задачи.

Учтем, что время подъема тела на высоту $h$ и время падения тела с высоты $h$ одинаковы, тогда промежуток времени между двумя последовательными положениями тела на высоте 5м равно: $∆t=t-2t'=4-2·0.268=4-0.5358=3.464=3.5$с.

Ответ: 3.5
Показать решение
Полный курс

Задача 3

Два шара массами 0,3 кг и 0,2 кг находятся на двух нитях, подвешенных в одной точке. Большой шар отклонили на угол 60◦ и отпустили. На какой максимальный угол отклонятся от вертикали оба шара, если соударение шаров абсолютно неупругое?

Решение

Дано:

$m_1=0.3$кг

$m_2=0.2$кг

$α=60°$

$β-?$

Решение:

Запишем закон сохранения энергии: $W_{п_1}=W_{к_1}$ или $m_1gh_1={m_1υ_1^2}/{2}$(2), где $h_1=l(1-cosα)$, где $l$ - длина нити. Тогда скорость первого шара перед ударом: $υ_1=√{2gl(1-cosα)}$(3). Запишем закон сохранения импульса: импульс системы остается постоянным при любых взаимодействиях внутри системы: $m_1υ_1↖{→}=(m_1+m_2)·U↖{→}$(4). В проекции на ось $X$: $m_1υ_1=(m_1+m_2)·U$(5). Тогда скорость шаров после соударения: $U={m_1υ_1}/{(m_1+m_2)}$(6). Запишем закон сохранения энергии: $W'_{к_1}=W'_{п_1}$ или ${m_1U^2}/{2}=m_1gh_2$, где $h_2=l(1-cosβ)$(7). Тогда высота $h_2$, на которую поднимутся шары после удара: $h_2={U^2}/{2g}={1}/{2g}·{m_1^2}/{(m_1+m_2)^2}·υ_1^2={1}/{2g}·{m_1^2·2gh_1}/{(m_1+m_2)^2}$ или $l-lcosβ={m_1^2·(l-l·cosα)}/{(m_1+m_2)^2}⇒l(1-cosβ)={0.09·l(1-cosα)}/{0.25}⇒0.25-0.25cosβ=0.09-0.09cosα⇒0.25-0.25cosβ=0.09-0.09cos60°⇒0.25-0.25cosβ=0.09-0.09·0.5$

$0.25cosβ=0.25-0.09+0.045$

$0.25cosβ=0.205$

$cosβ={0.205}/{0.25}=0.82$

$β=arccos(0.82)$

$β=34.91°$

Ответ: 34.9
Показать решение
Полный курс

Задача 4

Три одинаковых груза массами 2 кг каждый соединены нитью, перекинутой через блок так, как показано на рисунке 320. Масса груза 4 равна 5 кг. Определите ускорение системы грузов, если коэффициент трения грузов о плоскость 0,1, а плоскость составляет с горизонтом угол 30◦. Нити невесомые, нерастяжимые. Ответ округлить до сотых.

Решение

Дано:

$m_1=m_2=m_3=m=2$кг

$m_4=5$кг

$μ=0.1$

$g=10м/с^2$

$a-?$

Решение:

Учитывая, что нити невесомые и не растяжимые, то ускорения ${a_1}↖{→}={a_2}↖{→}={a}↖{→}$ и силы натяжения нитей: $T_{12}=T_{21};T_{23}=T_{32};T_{34}=T_{43}$(1).

Запишем второй закон Ньютона для каждого груза:

1 груз: $Ох_1$: $ma=T_{12}-mgsinα-F_{тр_1}$, где $F_{тр_1}=μN_1$; $Oy_1$: $O=N_1-mgcosα$, откуда $N_1=mgcosα; ma=T_{12}-mgsinα-μmgcosα$(2).

2 груз: $Ох_1$: $ma=T_{23}-T_{21}-mgsinα-μmgcosα$(3); $Oy_1$: $O=N_2-mgcosα$, откуда $F_{тр_2}=μN_2=mgcosα$.

3 груз: $Ох_1$: $ma=T_{34}-T_{32}-mgsinα-μmgcosα$(4); $Oy_1$: $O=N_3-mgcosα$, откуда $F_{тр_3}=μN_3=mgcosα$.

4 груз: $Oy_2$: $m_4a=m_4g-T_{43}$(5).

Из (2) выразим $T_{12}$: $T_{12}=ma+mgsinα+μmgcosα$(6).

Подставим (6) в (3), учитывая, что $T_{12}=T_{21}$: $ma=T_{23}-ma-mgsinα-μmgcosα-mgsinα-μmgcosα; T_{23}=2ma+2mgsinα+2μmgcosα$(7).

Подставим (7) в (4), учитывая, что $T_{23}=T_{32}$: $ma=T_{34}-2ma-2mgsinα-2μmgcosα-mgsinα-μmgcosα; T_{34}=3ma+3mgsinα+3μmgcosα$(8).

Подставим (8) в (5), учитывая, что $T_{34}=T_{43}$: $m_4a=m_4g-3ma-3mgsinα-3μmgcosα; m_4a+3ma=m_4g-3mgsinα-3μmgcosα$.

$a(m_4+3m)=m_4g-3mgsinα-3μmgcosα$

$a={m_4g-3mgsinα-3μmgcosα}/{(m_4+3m)}$(9)

Подставим числовые значения в (9) и найдем ускорение $a$: $a={5·10-3·2·10·0.5-3·0.1·2·10·0.866}/{5+3·2}={50-30-5.196}/{11}={14.804}/{11}=1.345м/с^2≈1.35м/с^2$.

Ответ: 1.35
Показать решение
Полный курс

Задача 5

С горки высотой 10 м, расположенной под углом 30◦ к горизонту, скатывается мальчик на санках. Какое расстояние проедут санки по горизонтальной поверхности после скатывания с горки, если коэффициент трения на всём пути 0,05? Ответ округлите до десятых

Решение

Дано:

$h=10$м

$μ=0.05$

$α=30°$

$g=10м/с^2$

$S_2-?$

Решение:

1 способ: через закон изменения энергии

Сумма работ сил трения на участках $S_1$ и $S_2$ равна изменению полной механической энергии мальчика на санках:

$∆E=A_{тр1}+A_{тр2}$

$0-mgh=F_{тр1}S_1cos(a_1)+F_{тр2}S_2cos(a_2)$

$a_1$ $a_2$ - углы между силами трения и перемещениями.
$a_1=a_2=180$

$-mgh=-F_{тр1}S_1-F_{тр2}S_2$

$mgh=F_{тр1}S_1+F_{тр2}S_2$ (1)

Найдём силы трения:

2 закон Ньютона при движении по склону:
$ma↖{→}_1=mg↖{→}+F_{тр}↖{→}_1+N↖{→}_1$

Проекция на ось, перпендикулярную наклонной поверхности:
$N_1-mgcosα=0$ $=>$ $N_1=mgcosα$

Путь, пройденный санками по горе $S_1$ равен: $S_1={h}/{sinα}$

$F_{тр1}=μN_1=μmgcosα$

2 закон Ньютона при движении по горизонтальной поверхности:
$ma↖{→}_2=mg↖{→}+F_{тр}↖{→}_2+N↖{→}_2$

Проекция на вертикальную ось:
$N_2-mg=0$ $=>$ $N_2=mg$

$F_{тр2}=μN_2=μmg$

Подставим всё в уравнение (1):

$mgh=μmgcosα{h}/{sinα}+μmgS_2$
$h=μcosα{h}/{sinα}+μS_2$
$h-μctgα{h}=μS_2$
$S_2=h/μ(1-μctgα)=182.6$

***

2 способ: через кинематику

Запишем второй закон Ньютона: $ma↖{→}=mg↖{→}+F_{тр}↖{→}+N↖{→}$(1). В проекциях на Ох: $ma=mgsinα-F_{тр}$(2), Oy: $O=N-mgcosα$(3), откуда $N=mgcosα$(4). Учитывая, что сила трения $F_{тр}=μN=μmgcosα$(5). Тогда ускорение тела из (2): $a={mgsinα-F_{тр}}/{m}={mgsinα-μmgcosα}/{m}=g(sinα-μcosα)$(6). Путь, пройденный санками по горе $S_1$ равен: $S_1={h}/{sinα}={υ^2}/{2a}$. Откуда квадрат скорости в конце спуска: $υ^2={2ah}/{sinα}={2gh(sinα-μcosα)}/{sinα}=2gh(1-μctgα)$(7). Запишем закон сохранения энергии: ${mυ^2}/{2}-0=F_{тр}·S_2$. Откуда $S_2={mυ^2}/{2F_{тр}}$(8), где $F_{тр}=μmg$. Тогда расстояние, которое санки пройдут по горизонтальному участку до полной остановки: $S_2={mυ^2}/{2F_{тр}}={m·2gh(1-μctgα)}/{2μmg}={h}/{μ}(1-μctgα)$(9).

Подставим числовые значения и найдем $S_2$: $S_2={10}/{0.05}·(1-0.05·ctg30)=200·(1-0.05·√3)=200(1-0.0866)=200(0.91339)=182.679=182.6$м.

Ответ: 182.6
Показать решение
Полный курс

Задача 6

Шарик массой 0,5 кг, падая с некоторой высоты, ударяется о наклонную плоскость и упруго отскакивает от неё без потери скорости. Угол наклона плоскости к горизонту 30◦. За время удара плоскость получает импульс 2 кг·м/c. Определите, на какую высоту (относительно точки отскока) поднимется тело. Ответ выразите в см.

Решение

Решение:

По закону сохранения энергии $F∆t=m∆υ$, где $∆υ=υ_1·cosα-(-υ_2·cosα)⇒∆υ=cosα(υ_1+υ_2); υ_1=υ_2=υ$. Тогда $F∆t-2·m·υ·cosα$. Из условия $υ_y=υ·sin({π}/{2}-2·α)-g·t=υ·cos2α-gt; υ_y=0$ в верхней точке, следовательно, $t={υ·cos2α}/{g}$, а $H={υ^2·sin^2α}/{2g}; υ={F∆t}/{2m·cosα}$, тогда $H={({4}/{2·0.5·{√3}/{2}})·0.5^2}/{2·10}=6.7$см

Ответ: 6.7
Показать решение
Полный курс

Задача 7

Сплошной кубик плотностью 960 кг/м3 плавает на границе раздела воды и керосина, погружаясь в воду на 5 см. Слой керосина располагается выше, чем верхняя поверхность кубика. Определите длину ребра кубика.

Ответ дайте в сантиметрах.
Решение

Дано:

$h_в=0.05$м

$ρ_в=1000{кг}/{м^3}$

$ρ_к=800{кг}/{м^3}$

$ρ_{куб}=960{кг}/{м^3}$

$h_{куб}-?$

Решение:

По 2-му закону Ньютона $mg=F_{A_1}+F_{A_2}; F_{A_1}=ρ_в·g·V_в$ и $V_в=h_в·S$ - объем в воде.

$F_{A_2}=ρ_к·g·V_к$ и $V_к=h_к·S$ - объем в керосине.

Тогда условия плавания кубика: $ρ_{куб}·g·h_{куб}·S=ρ_в·g·h_в·S+ρ_к·g·h_в·S$

$h_к=h_{куб}-h_в$, тогда $ρ_{куб}·g·h_{куб}·S=ρ_в·g·h_в·S+ρ_к·g·h_к·S-ρ_к·g·h_к·S=(ρ_в-ρ_к)h_в$

$h_{куб}={h_в(ρ_в-ρ_к)}/{ρ_{куб}-ρ_к}={0.05(1000-800)}/{960-800}=6.25$см.

Ответ: 6.25
Показать решение
Полный курс

Задача 8

Груз массой m = 1 кг падает с высоты h = 240 м и углубляется в песок на S = 0,2 м. Определите среднюю силу сопротивления грунта ‹Fc›, если начальная скорость падения груза ν0 = 14 м/с. Сопротивление воздуха не учитывать.

Решение

Дано:

$m=1$кг

$h=240$м

$S=0.02$м

$F_c-?$

$υ_0=14$м/с

Решение:

По закону сохранения энергии составим уравнение: $mgH+{mυ_0^2}/{2}=F_c·S; F_c·{1}/{S}(mgH+{mυ_0^2}/{2})$

$F_c={1}/{0.2}(1·10·240+{1·14^2}/{2})≈1270$H.

Ответ: 1270
Показать решение
Полный курс

Задача 9

В центр катка радиусом R приложена сила, равная его силе тяжести. Какой максимально должна быть высота порожка hmax, чтобы каток можно было закатить на порожек?

Решение

Решение:

Запишем равенство моментов от силы тяжести и от приложенной силы. Момент силы тяжести $mg√{R^2-(R-h)^2}$, а от действующей силы $F(R-h)$, тогда $mg√{R^2-(R-h)^2}=F(R-h)$, помним, что $F=mg$.

$R^2-(R-h)^2=(R-h)^2⇒R=√2(R-h)⇒1.41h=0.41R$.

$h={0.41}/{1.41}·R=0.293·R$

Ответ: 0.293R
Показать решение
Полный курс

Задача 10

Маятник массой m отклонён на угол α от вертикали. Какова сила натяжения нити при прохождении маятником положения равновесия?

Решение

Дано:

$m$ - масса

$α$ - угол

$T-?$

Решение:

1) Определим начальную высоту шарика относительно положению равновесия $h=l-l·cosα=l(1-cosα)$.

2) По закону сохранения $mgh={mυ^2}/{2}$ выразим силу натяжения.

3) Тогда $T=mg+{mυ^2}/{2}=mg+2mg{h}/{l}=mg(3-2cosα)=mg+2mg({l(1-cosα)}/{l})=mg(3-2cosα)$

Ответ: mg(3−2cosα)
Показать решение
Полный курс

Задача 11

Тело брошено вертикально вверх с начальной скоростью v0 = 3,13 м/с. Когда оно достигло верхней точки полёта, из того же места с такой же скоростью бросили второе тело. Определите, на каком расстоянии от точки бросания встретятся тела. Сопротивление воздуха не учитывать.

Решение

Дано:

$υ_0=3.13м/c$

$υ_1=3.13м/c$

$h-?$

Решение:

Запишем уравнения движения для 1 и 2 тела $\{\table\y=υ_0t_1-{gt_1^2}/{2}; \y=υ_0t_2-{gt_2^2}/{2};$

Также известно, что 2 тело бросили позднее по $t_1-t_2=τ, τ={υ_0}/{g}$.

$y=h$(условие)

Решая составленную систему получим: $h={3}/{4}·{υ_0^2}/{2g}≈0.4$м.

Ответ: 0.4
Показать решение
Полный курс

Задача 12

Чему равно ускорение силы тяжести на поверхности некоторой планеты, радиус которой равен радиусу Земли, но средняя плотность в 1,5 раза больше средней плотности Земли? Ускорение на Земле принять равным 10 $м/{c^2}$.

Решение

Если радиусы планет равны, то их объёмы тоже равны

Ускорение на Земле:$g_3=G{M_3}/{R_3}=G{ρ_3V}/{R_3}$

Ускорение на другой планете: $g_п=G{M_п}/{R_3}=G{1,5ρ_3V}/{R_3}$

$g_3=1,5g_п=15м/{c^2}$

Ответ: 15
Показать решение
Полный курс

Задача 13

Шарик массой 200 г, висящий на нити длиной 1,5 м, отводят в сторону так, чтобы нить заняла горизонтальное положение, и отпускают без толчка. Внизу на расстоянии 1,0 м под точкой подвеса вбит гвоздь. Какую силу натяжения будет иметь нить в момент, когда она вновь займёт горизонтальное положение, налетев на гвоздь?

Решение

Дано:

$m=200г=0.2$кг

$l=1.5$м

$H=1$м

Решение:

В момент, когда нижняя часть нити займет горизонтальное положение, шарик будет на той же высоте, что и гвоздь. Тогда за счет отпускания шарика, сила тяжести совершит работу $A=mgh$, которая перейдет в кинетическую ${mυ^2}/{2}$. Поскольку проекция вертикального вектора тяжести на горизонтальную равна 0, сила натяжения будет равна центробежной силе $T={υ^2}/{r}$, а $r=1.5-1=0.5$м - длина нижней части нити. Из всего следует, $T=4mg=4·0.2·10=8H$

Ответ: 8
Показать решение
Полный курс

Задача 14

Два бруска массой 3,0 кг каждый, лежащие на горизонтальной поверхности, соединены невесомой недеформированной пружиной с жёсткостью, равной 1,0 Н/м. Коэффициент трения между брусками и поверхностью равен 0,20. Какую минимальную скорость нужно сообщить одному из брусков вдоль пружины, чтобы он, растянув пружину, смог сдвинуть второй брусок?

Решение

Дано:

$m_1=m_2=3$кг

$k=1$Н/м

$μ=0.2$

$υ-?$

Решение:

1) Чтобы сдвинуть 2-й брусок, сила упругости должна превысить силу трения скольжения $kx=μ·m_2g$

Мы знаем, что энергия пружины ${kx^2}/{2}$, а движущееся тело ${m·υ^2}/{2}$ должно затратить энергию на работу против сил трения и на сжатие пружины ${m·υ^2}/{2}={kx^2}/{2}+μ·mg·x⇔x={μ·mg}/{k}$. Преобразуя, получим: $υ=μ·g{√{3m}}/{k}=0.2·10{√{3·3}}/{1}=6м/с$

Ответ: 6
Показать решение
Полный курс

Задача 15

Плот массой 120 кг движется по реке со скоростью 5,3 м/с. С берега на плот бросают груз массой 85 кг, который летит со скоростью 12 м/с, направленной перпендикулярно скорости плота. Определите потери механической энергии при абсолютно неупругом ударе груза о плот.

Решение

Дано:

$m_1=120$кг

$υ_1=5.3$м/с

$m_2=85$кг

$υ_2=12$м/с

$∆E-?$

Решение:

Так как удар не упругий, то запишем закон сохранения импульса: $m_1{υ_1}↖{→}+m_2{υ_2}↖{→}=(m_1+m_2)·υ↖{→}$(1). В проекциях на ось Ох и Оу имеем: $Ox: m_1υ_1=(m_1+m_2)·υ·cosα$(2); $Oy: m_2υ_2=(m_1+m_2)·υ·sinα$(3)

Разделим (3) и (2) и найдем угол $α$: ${sinα}/{cosα}={m_2υ_2}/{m_1υ_1}⇒tgα={85·12}/{120·5.3}=1.60377358490566$, откуда $α=arctg(1.60377)≈58.055°$(4). Найдем скорость $υ$ из (1): $υ={m_1υ_1}/{(m_1+m_2)·υ·cosα}={120·5.3}/{205·cos58°}=5.8636м/с$

Запишем закон сохранения механической энергии: ${m_1υ_1^2}/{2}+{m_2υ_2^2}/{2}={(m_1+m_2)·υ^2}/{2}+∆E$(6), где $∆E$ - потери механической энергии. Из (6) имеем: $∆E={m_1υ_1^2}/{2}+{m_2υ_2^2}/{2}-{(m_1+m_2)·υ^2}/{2}$(7). Подставим числовые значения в (7), имеем: $∆E={120·28.09}/{2}+{85·144}/{2}-{(205)·34.382}/{2}=1685.4+6120-3524.135=4281.265=4.3$кДж.

Ответ: 4.3
Показать решение
Полный курс

Задача 16

Небольшой шарик, падая с высоты 1 м, отскакивает от земли со скоростью в 0,94 раза меньшей, чем до удара. Определите, сколько ударов совершит шарик за 1,3 с.

Решение

Дано:

$h_1=1$м

$υ_2=0.94υ_1$

$t=1.3$

$N-?$

Решение:

Падая с высоты $h_1$, шарик подлетает к полу со скоростью $υ_1$, а отталкивает от него со скоростью $υ_2=0.94υ_1$. Согласно закону сохранения механической энергии: $mgh_1={mυ_1^2}/{2}$ и $mgh_2={mυ_2^2}/{2}$, откуда $υ_1=√{2gh_1}$, а $υ_2=√{2gh_2}$

После почленного деления получим: ${υ_2}/{υ_1}={0.94υ_1}/{υ_1}={√{h_2}}/{√{h_1}}$, т.е. $h_2=(0.94)^2·h_1$.

Промежуток времени с момента падения шарика до второго удара об пол: $t=t_1+2t_2$, где $t_1$ - время падения шарика с высоты $h_1$ и $t_2$ - время падения шарика с высоты $h_2$.

Найдем $t_1$ и $t_2$: $h_1={gt_1^2}/{2}$, откуда $t_1=√{{2h_1}/{g}}=√{{2·1}/{9.8}}=0.451c$. Тогда $t_2=√{{2h_2}/{g}}=0.94√{{2h_1}/{g}}=0.94·0.451c=0.4246c$

Поскольку после первого удара шарику нужно подняться на высоту $h_2$, то время между первым и вторым ударом будет равно $2t_2$ или $2t_2=2·0.4246=0.849c$

Сложив $t_1$ и $2t_2$ получим: $t_1=2t_2=0.451+0.849=1.3c$. Значит, за время $t=1.3$ секунды, шарик совершает $N=2$удара.

Ответ: 2
Показать решение
Полный курс

Задача 17

Какой угол образует с вертикалью конический маятник, если за 2 с он совершает один полный оборот по окружности радиусом 10 см?

Решение

Дано:

$R=0.1$м

$t=2$c

$g≈10{м}/{с^2}$

$α-?$

Решение:

На маятник действуют сила тяжести $m{g}↖{→}$, сила напряжения нити $T↖{→}$ и центробежная сила инерции ${F_{ц.б.}}↖{→}=m{a_{ц.б.}}↖{→}$, где $a_{ц.б.}={υ^2}/{R}$(1).

Из рисунка видно, что в проекции на оси Ох и Оу имеем.

$Ох: O=ma_{ц.б.}-T·sinα$(2)

$Оy: O=mg-T·cosα$(3)

Выразим силу натяжения нити $T$ и приравняем друг к другу: Из (2): $T={ma_{ц.б.}}/{sinα}={mυ^2}/{R·sinα}$(4)

Из (3): $T={mg}/{cosα}$(5). Разделим (5) на (4): ${mg}/{cosα}:{mυ^2}/{R·sinα}={T}/{T}⇒1={mg}/{cosα}·{R·sinα}/{mυ^2}⇒tgα={υ^2}/{gR}$(6) или $υ=√{gk·tgα}$(7)

Период колебаний $t={2πR}/{υ}$(8). Подставим (7) в (8) и найдем угол: $t={2πR}/{√{gk·tgα}}⇒t^2={4π^2R^2}/{gk·tgα}⇒tgα={4π^2}/{gt^2}⇒α=arctg({4π^2}/{gt^2})$(9). Тогда, $α=arctg({4·9.8596·0.1}/{10·4})≈5.63°≈6°$

Ответ: 6
Показать решение
Полный курс

Задача 18

Каков радиус окружности, описываемой коническим маятником, если он с вертикалью образует угол 15◦? Период обращения маятника составляет 2 с.

Решение

Дано:

$α=15°$

$t=2$c

$R-?$

Решение:

Из рисунка видно, что в проекции на оси Ох и Оу имеем: $a_{ц.б.}={υ^2}/{R}$(1).

$Ох: O=ma_{ц.б.}-T·cos(90°-α)$(2)

$Оy: O=mg-T·cosα$(3)

Учитывая, что $cos(90°-α)=sinα$, выразим силу натяжения нити $T$ и приравняем друг к другу: Из (2): $T={ma_{ц.б.}}/{sinα}={mυ^2}/{R·sinα}$(4)

Из (3): $T={mg}/{cosα}$(5). Приравняем (4) и (5): ${mυ^2}/{R·sinα}={mg}/{cosα}⇒υ^2={gR·sinα}/{cosα}⇒υ=√{gR·tgα}$(6)

Период колебаний $T={2πR}/{υ}$(7). Подставим (6) в (7): $T={2πR}/{√{gR·tgα}}⇒T^2={4π^2R^2}/{gR·tgα}⇒R={gT^2·tgα}/{4π^2}={10·4·0.268}/{4·9.8596}=0.27м$

Ответ: 0.27
Показать решение
Полный курс

Задача 19

Вертолёт, летящий на высоте 250 м со скоростью 30 м/с, сбрасывает груз. С какой скоростью груз упадёт на землю? Сопротивление воздуха не учитывать.

Решение

Дано:

$h=250$м

$υ_в=30{м}/{с}$

$g≈10{м}/{с^2}$

$υ_г-?$

Решение:

По закону сохранения механической энергии полная энергия системы в точке 1 равна полной энергии системы в точке 2: $E_1=E_2$(1), где $E_1=E_{п_1}+E_{к_1}; E_2=E_{п_2}+E_{к_2}; E_{п_1}=mgh; E_{к_1}={mυ_г^2}/{2}; E_{п_2}=0(h_2=0); E_{к_2}={mυ_в^2}/{2}$.

Подставим числовые значения: $mgh+{mυ_в^2}/{2}=0+{mυ_г^2}/{2}|·2$.

$υ_г^2=υ_в^2+2gh$

$υ_г=√{υ_в^2+2gh}$(4).

Подставим числовые значения в (4) и найдем скорость груза: $υ_г=√{900+2·10·250}=√{900+5000}=76.81≈77{м}/{с}$

Ответ: 77
Показать решение
Полный курс

Задача 20

Вертолёт, летящий на высоте 250 м, сбрасывает груз. Груз приземляется со скоростью 81 м/с. С какой скоростью летит вертолёт? Сопротивление воздуха не учитывать. Ответ представьте в м/с с точностью до десятых

Решение

Дано:

$h=250$м

$υ_г=81{м}/{с}$

$g≈10{м}/{с^2}$

$υ_в-?$

Решение:

По закону сохранения механической энергии полная энергия системы в точке 1 равна полной энергии системы в точке 2: $E_1=E_2$(1), где $E_1=mgh+{mυ_в^2}/{2}$(2), $E_2={mυ_г^2}/{2}$(3).

Подставим числовые значения (2) и (3) в (1) $mgh+{mυ_в^2}/{2}={mυ_г^2}/{2}⇒{υ_в^2}/{2}={υ_г^2}/{2}-gh/·2$.

$υ_в^2=υ_г^2-2gh⇒υ_в=√{υ_г^2-2gh}$(4).

Подставим числовые значения в (4): $υ_в=√{(81)^2-2·10·250}=√{6561-5000}=√{1561}≈39.51≈40{м}/{с}$

Ответ: 39.5
Показать решение
Полный курс
Показать еще

Готовим к ЕГЭ на 85+ баллов и побеждаем лень

Каждый месяц 12 онлайн-занятий в дружелюбной атмосфере + 16 домашних работ с жесткими сроками.
Не готовишься — вылетаешь.

Подробнее о курсе